--- language: - hsb license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Upper Sorbian comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: hsb metrics: - name: Test WER type: wer value: 56.3 - name: Test CER type: cer value: 14.3 --- # Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9643 - Wer: 0.5037 - Cer: 0.1278 ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-hsb-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config hsb ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:------:|:------:| | 4.3121 | 19.35 | 1200 | 3.2059 | 1.0 | 1.0 | | 2.6525 | 38.71 | 2400 | 1.1324 | 0.9387 | 0.3204 | | 1.3644 | 58.06 | 3600 | 0.8767 | 0.8099 | 0.2271 | | 1.093 | 77.42 | 4800 | 0.8739 | 0.7603 | 0.2090 | | 0.9546 | 96.77 | 6000 | 0.8454 | 0.6983 | 0.1882 | | 0.8554 | 116.13 | 7200 | 0.8197 | 0.6484 | 0.1708 | | 0.775 | 135.48 | 8400 | 0.8452 | 0.6345 | 0.1681 | | 0.7167 | 154.84 | 9600 | 0.8551 | 0.6241 | 0.1631 | | 0.6609 | 174.19 | 10800 | 0.8442 | 0.5821 | 0.1531 | | 0.616 | 193.55 | 12000 | 0.8892 | 0.5864 | 0.1527 | | 0.5815 | 212.9 | 13200 | 0.8839 | 0.5772 | 0.1503 | | 0.55 | 232.26 | 14400 | 0.8905 | 0.5665 | 0.1436 | | 0.5173 | 251.61 | 15600 | 0.8995 | 0.5471 | 0.1417 | | 0.4969 | 270.97 | 16800 | 0.8633 | 0.5325 | 0.1334 | | 0.4803 | 290.32 | 18000 | 0.9074 | 0.5253 | 0.1352 | | 0.4596 | 309.68 | 19200 | 0.9159 | 0.5146 | 0.1294 | | 0.4415 | 329.03 | 20400 | 0.9055 | 0.5189 | 0.1314 | | 0.434 | 348.39 | 21600 | 0.9435 | 0.5208 | 0.1314 | | 0.4199 | 367.74 | 22800 | 0.9199 | 0.5136 | 0.1290 | | 0.4008 | 387.1 | 24000 | 0.9342 | 0.5174 | 0.1303 | | 0.4051 | 406.45 | 25200 | 0.9436 | 0.5132 | 0.1292 | | 0.3861 | 425.81 | 26400 | 0.9417 | 0.5084 | 0.1283 | | 0.3738 | 445.16 | 27600 | 0.9573 | 0.5079 | 0.1299 | | 0.3768 | 464.52 | 28800 | 0.9682 | 0.5062 | 0.1289 | | 0.3647 | 483.87 | 30000 | 0.9643 | 0.5037 | 0.1278 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0