ssast-t2-f128-p400.as-ls / modeling_audio_spectrogram_transformer.py
yangwang825's picture
Create modeling_audio_spectrogram_transformer.py
9f52360 verified
# coding=utf-8
# Copyright 2022 MIT and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Audio Spectrogram Transformer (AST) model."""
import math
from typing import Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_audio_spectrogram_transformer import ASTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ASTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "MIT/ast-finetuned-audioset-10-10-0.4593"
_EXPECTED_OUTPUT_SHAPE = [1, 1214, 768]
# Audio classification docstring
_SEQ_CLASS_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593"
_SEQ_CLASS_EXPECTED_OUTPUT = "'Speech'"
_SEQ_CLASS_EXPECTED_LOSS = 0.17
class ASTEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.patch_embeddings = ASTPatchEmbeddings(config)
frequency_out_dimension, time_out_dimension = self.get_shape(config)
num_patches = frequency_out_dimension * time_out_dimension
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def get_shape(self, config):
# see Karpathy's cs231n blog on how to calculate the output dimensions
# https://cs231n.github.io/convolutional-networks/#conv
if config.frequency_patch_size is not None:
frequency_out_dimension = (config.num_mel_bins - config.frequency_patch_size) // config.frequency_stride + 1
else:
frequency_out_dimension = (config.num_mel_bins - config.patch_size) // config.frequency_stride + 1
if config.time_patch_size is not None:
time_out_dimension = (config.max_length - config.time_patch_size) // config.time_stride + 1
else:
time_out_dimension = (config.max_length - config.patch_size) // config.time_stride + 1
return frequency_out_dimension, time_out_dimension
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
batch_size = input_values.shape[0]
embeddings = self.patch_embeddings(input_values)
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class ASTPatchEmbeddings(nn.Module):
"""
This class turns `input_values` into the initial `hidden_states` (patch embeddings) of shape `(batch_size,
seq_length, hidden_size)` to be consumed by a Transformer.
"""
def __init__(self, config):
super().__init__()
if config.frequency_patch_size is not None and config.time_patch_size is not None:
kernel_size = (config.frequency_patch_size, config.time_patch_size)
else:
kernel_size = (config.patch_size, config.patch_size)
frequency_stride = config.frequency_stride
time_stride = config.time_stride
self.projection = nn.Conv2d(
1, config.hidden_size, kernel_size=kernel_size, stride=(frequency_stride, time_stride)
)
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
input_values = input_values.unsqueeze(1)
input_values = input_values.transpose(2, 3)
embeddings = self.projection(input_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->AST
class ASTSelfAttention(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSdpaSelfAttention with ViT->AST
class ASTSdpaSelfAttention(ASTSelfAttention):
def __init__(self, config: ASTConfig) -> None:
super().__init__(config)
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
head_mask,
self.attention_probs_dropout_prob if self.training else 0.0,
is_causal=False,
scale=None,
)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
return context_layer, None
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->AST
class ASTSelfOutput(nn.Module):
"""
The residual connection is defined in ASTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->AST
class ASTAttention(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.attention = ASTSelfAttention(config)
self.output = ASTSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->AST
class ASTSdpaAttention(ASTAttention):
def __init__(self, config: ASTConfig) -> None:
super().__init__(config)
self.attention = ASTSdpaSelfAttention(config)
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->AST
class ASTIntermediate(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->AST
class ASTOutput(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
AST_ATTENTION_CLASSES = {
"eager": ASTAttention,
"sdpa": ASTSdpaAttention,
}
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->AST,VIT->AST
class ASTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = AST_ATTENTION_CLASSES[config._attn_implementation](config)
self.intermediate = ASTIntermediate(config)
self.output = ASTOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in AST, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in AST, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->AST
class ASTEncoder(nn.Module):
def __init__(self, config: ASTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([ASTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class ASTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ASTConfig
base_model_prefix = "audio_spectrogram_transformer"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_supports_sdpa = True
# Copied from transformers.models.deit.modeling_deit.DeiTPreTrainedModel._init_weights
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ASTConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare AST Model transformer outputting raw hidden-states without any specific head on top.",
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
)
class ASTModel(ASTPreTrainedModel):
def __init__(self, config: ASTConfig) -> None:
super().__init__(config)
self.config = config
self.embeddings = ASTEmbeddings(config)
self.encoder = ASTEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> ASTPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_values is None:
raise ValueError("You have to specify input_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(input_values)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = (sequence_output[:, 0] + sequence_output[:, 1]) / 2
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class ASTMLPHead(nn.Module):
def __init__(self, config: ASTConfig):
super().__init__()
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dense = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
def forward(self, hidden_state):
hidden_state = self.layernorm(hidden_state)
hidden_state = self.dense(hidden_state)
return hidden_state
@add_start_docstrings(
"""
Audio Spectrogram Transformer model with an audio classification head on top (a linear layer on top of the pooled
output) e.g. for datasets like AudioSet, Speech Commands v2.
""",
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
)
class ASTForAudioClassification(ASTPreTrainedModel):
def __init__(self, config: ASTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.audio_spectrogram_transformer = ASTModel(config)
# Classifier head
self.classifier = ASTMLPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_SEQ_CLASS_CHECKPOINT,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the audio classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.audio_spectrogram_transformer(
input_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)