--- license: bigscience-openrail-m base_model: ehsanaghaei/SecureBERT tags: - generated_from_trainer - cybersecurity metrics: - accuracy model-index: - name: vuln-cat-secbert results: [] widget: - text: A NULL pointer dereference flaw was found in KubeVirt. --- # vuln-cat-secbert This model is a fine-tuned version of [ehsanaghaei/SecureBERT](https://huggingface.co/ehsanaghaei/SecureBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6754 - Accuracy: 0.8977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 110 | 0.5211 | 0.8886 | | No log | 2.0 | 220 | 0.5437 | 0.8932 | | No log | 3.0 | 330 | 0.5760 | 0.8909 | | No log | 4.0 | 440 | 0.6122 | 0.8955 | | 0.103 | 5.0 | 550 | 0.6467 | 0.8932 | | 0.103 | 6.0 | 660 | 0.6633 | 0.8977 | | 0.103 | 7.0 | 770 | 0.6719 | 0.8977 | | 0.103 | 8.0 | 880 | 0.6754 | 0.8977 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2