--- license: other --- # ⓍTTS ⓍTTS is a super cool Text-to-Speech model that lets you clone voices in different languages by using just a quick 3-second audio clip. Built on the 🐢Tortoise, ⓍTTS has important model changes that make cross-language voice cloning and multi-lingual speech generation super easy. There is no need for an excessive amount of training data that spans countless hours. This is the same model that powers [Coqui Studio](https://coqui.ai/), and [Coqui API](https://docs.coqui.ai/docs), however we apply a few tricks to make it faster and support streaming inference. ### Features - Supports 13 languages. - Voice cloning with just a 3-second audio clip. - Emotion and style transfer by cloning. - Cross-language voice cloning. - Multi-lingual speech generation. - 24khz sampling rate. ### Code The current implementation only supports inference. ### Languages As of now, XTTS-v1 supports 13 languages: **English, Spanish, French, German, Italian, Portuguese, Polish, Turkish, Russian, Dutch, Czech, Arabic, and Chinese**. Stay tuned as we continue to add support for more languages. If you have any language requests, please feel free to reach out. ### License This model is licensed under [Coqui Public Model License](). ### Contact Come and join in our 🐸Community. We're active on [Discord](https://discord.gg/fBC58unbKE) and [Twitter](https://twitter.com/coqui_ai). You can also mail us at info@coqui.ai. Using 🐸TTS API: ```python from TTS.api import TTS tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True) # generate speech by cloning a voice using default settings tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", file_path="output.wav", speaker_wav="/path/to/target/speaker.wav", language="en") # generate speech by cloning a voice using custom settings tts.tts_to_file(text="It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", file_path="output.wav", speaker_wav="/path/to/target/speaker.wav", language="en", decoder_iterations=30) ``` Using 🐸TTS Command line: ```console tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 \ --text "Bugün okula gitmek istemiyorum." \ --speaker_wav /path/to/target/speaker.wav \ --language_idx tr \ --use_cuda true ``` Using model directly: ```python from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts config = XttsConfig() config.load_json("/path/to/xtts/config.json") model = Xtts.init_from_config(config) model.load_checkpoint(config, checkpoint_dir="/path/to/xtts/", eval=True) model.cuda() outputs = model.synthesize( "It took me quite a long time to develop a voice and now that I have it I am not going to be silent.", config, speaker_wav="/data/TTS-public/_refclips/3.wav", gpt_cond_len=3, language="en", ) ``` ## Important resources & papers - VallE: https://arxiv.org/abs/2301.02111 - Tortoise Repo: https://github.com/neonbjb/tortoise-tts - Faster implementation: https://github.com/152334H/tortoise-tts-fast - Univnet: https://arxiv.org/abs/2106.07889 - Latent Diffusion:https://arxiv.org/abs/2112.10752 - DALL-E: https://arxiv.org/abs/2102.12092 ## XttsConfig ```{eval-rst} .. autoclass:: TTS.tts.configs.xtts_config.XttsConfig :members: ``` ## XttsArgs ```{eval-rst} .. autoclass:: TTS.tts.models.xtts.XttsArgs :members: ``` ## XTTS Model ```{eval-rst} .. autoclass:: TTS.tts.models.xtts.XTTS :members: ```