--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - funsd-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: funsd-layoutlmv3 type: funsd-layoutlmv3 config: funsd split: test args: funsd metrics: - name: Precision type: precision value: 0.8808265257087938 - name: Recall type: recall value: 0.910581222056632 - name: F1 type: f1 value: 0.895456765999023 - name: Accuracy type: accuracy value: 0.8507072387970998 --- # test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5799 - Precision: 0.8808 - Recall: 0.9106 - F1: 0.8955 - Accuracy: 0.8507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.3333 | 100 | 0.6686 | 0.7452 | 0.8251 | 0.7831 | 0.7535 | | No log | 2.6667 | 200 | 0.4724 | 0.8064 | 0.8713 | 0.8376 | 0.8389 | | No log | 4.0 | 300 | 0.4922 | 0.8612 | 0.8942 | 0.8774 | 0.8481 | | No log | 5.3333 | 400 | 0.4632 | 0.8587 | 0.8997 | 0.8787 | 0.8521 | | 0.544 | 6.6667 | 500 | 0.4850 | 0.8632 | 0.9031 | 0.8827 | 0.8474 | | 0.544 | 8.0 | 600 | 0.5024 | 0.8744 | 0.8992 | 0.8866 | 0.8451 | | 0.544 | 9.3333 | 700 | 0.5394 | 0.8768 | 0.9155 | 0.8957 | 0.8565 | | 0.544 | 10.6667 | 800 | 0.5647 | 0.8800 | 0.9146 | 0.8970 | 0.8550 | | 0.544 | 12.0 | 900 | 0.5798 | 0.8847 | 0.9106 | 0.8974 | 0.8545 | | 0.1288 | 13.3333 | 1000 | 0.5799 | 0.8808 | 0.9106 | 0.8955 | 0.8507 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.19.1