--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/coreml/coreml-anything-v3-1/resolve/main/example-images/thumbnail.png" language: - en tags: - coreml - stable-diffusion - stable-diffusion-diffusers --- # Core ML Converted Model This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).
Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.
`split_einsum` version is compatible with all compute unit options including Neural Engine.
`original` version is only compatible with CPU & GPU option. # 🧩 Paper Cut model V1 This is the fine-tuned Stable Diffusion model trained on Paper Cut images. Use **PaperCut** in your prompts. ### Sample images: ![PaperCut.jpg](https://s3.amazonaws.com/moonup/production/uploads/1667910351389-635749860725c2f190a76e88.jpeg) ![PaperCut.jpg](https://s3.amazonaws.com/moonup/production/uploads/1667912285222-635749860725c2f190a76e88.jpeg) Based on StableDiffusion 1.5 model ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "Fictiverse/Stable_Diffusion_PaperCut_Model" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "PaperCut R2-D2" image = pipe(prompt).images[0] image.save("./R2-D2.png") ``` ### ✨ Community spotlight : @PiyarSquare : [![PiyarSquare video](https://img.youtube.com/vi/wQWHnZlxFj8/0.jpg)](https://www.youtube.com/watch?v=wQWHnZlxFj8)