--- license: other license_link: https://llama.meta.com/llama3/license/ base_model: meta-llama/Llama-3.3-70B-Instruct --- This is a quantization of the [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct). The Meta Llama 3.3 is a state-of-the-art multilingual large language model (LLM) with 70 billion parameters, pretrained and instruction-tuned for exceptional performance in generative text-based tasks. Optimized for multilingual dialogue, it supports English and seven additional languages: French, German, Hindi, Italian, Portuguese, Spanish, and Thai, enabling seamless communication across diverse audiences. The model consistently outperforms both open-source and proprietary chat models on key industry benchmarks, delivering superior quality, safety, and helpfulness. Its advanced features and multilingual support position Llama 3.3 as a powerful tool for building innovative AI applications. ## Evaluations This model provides an accuracy recovery of 99.67%. | __English__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs--Llama-3.3-70B-Instruct-FP8-Dynamic)__ | |:--------------|:------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------| | Avg. | 74.1 | 73.75 | | Arc | 71.7 | 71.6 | | Hellaswag | 76.5 | 75.9 | | | | | | __French__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs--Llama-3.3-70B-Instruct-FP8-Dynamic)__ | | Avg. | 73.07 | 72.87 | | Arc | 64.7 | 64.5 | | Hellaswag | 76.6 | 76.6 | | MMLU | 77.9 | 77.5 | | | | | | __German__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs--Llama-3.3-70B-Instruct-FP8-Dynamic)__ | | Avg. | 70.07 | 69.83 | | Arc | 61.8 | 61.2 | | Hellaswag | 71.2 | 71.1 | | MMLU | 77.2 | 77.2 | | | | | | __Italian__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs--Llama-3.3-70B-Instruct-FP8-Dynamic)__ | | Avg. | 73.67 | 73.37 | | Arc | 66.5 | 65.7 | | Hellaswag | 76.0 | 76.2 | | MMLU | 78.5 | 78.2 | | | | | | __Portuguese__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs--Llama-3.3-70B-Instruct-FP8-Dynamic)__ | | Avg. | 74.4 | 73.87 | | Arc | 66.4 | 65.5 | | Hellaswag | 77.2 | 76.9 | | MMLU | 79.6 | 79.2 | | | | | | __Spanish__ | __[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama--Llama-3.3-70B-Instruct)__ | __[Llama-3.3-70B-Instruct-FP8-Dynamic (this)](https://huggingface.co/cortecs--Llama-3.3-70B-Instruct-FP8-Dynamic)__ | | Avg. | 74 | 74.13 | | Arc | 65.8 | 65.8 | | Hellaswag | 77.1 | 77.2 | | MMLU | 79.1 | 79.4 | We did not check for data contamination. Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) with `limit=1000`. ## Usage Install **vLLM** and run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): ``` python -m vllm.entrypoints.openai.api_server --model cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic ``` Access the model: ``` curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { "model": "cortecs/Llama-3.3-70B-Instruct-FP8-Dynamic", "prompt": "San Francisco is a" } ' ``` ⚡ This model is optimized to handle heavy workloads providing a total throughput of ️**1485 tokens per second** using one NVIDIA H100 ⚡