|
--- |
|
license: apache-2.0 |
|
datasets: wikitext |
|
license_link: https://llama.meta.com/llama3/license/ |
|
--- |
|
This is a quantized model of [Llama-3 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) using GPTQ developed by [IST Austria](https://ist.ac.at/en/research/alistarh-group/) |
|
using the following configuration: |
|
- 4bit (8bit will follow) |
|
- Act order: True |
|
- Group size: 128 |
|
|
|
## Usage |
|
Install **vLLM** and |
|
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): |
|
|
|
``` |
|
python -m vllm.entrypoints.openai.api_server --model cortecs/Meta-Llama-3-70B-Instruct-GPTQ |
|
``` |
|
Access the model: |
|
``` |
|
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { |
|
"model": "cortecs/Meta-Llama-3-70B-Instruct-GPTQ", |
|
"prompt": "San Francisco is a" |
|
} ' |
|
``` |
|
|
|
## Evaluations |
|
| __English__ | __Llama-3 70B Instruct__ | __Llama 3 70B Instruct GPTQ__ | __Mixtral Instruct__ | |
|
|:--------------|:---------------------------|:--------------------------------|:-----------------------| |
|
| Avg. | 76.19 | 75.14 | 73.17 | |
|
| ARC | 71.6 | 70.7 | 71.0 | |
|
| Hellaswag | 77.3 | 76.4 | 77.0 | |
|
| MMLU | 79.66 | 78.33 | 71.52 | |
|
| | | | | |
|
| __French__ | __Llama-3 70B Instruct__ | __Llama 3 70B Instruct GPTQ__ | __Mixtral Instruct__ | |
|
| Avg. | 70.97 | 70.27 | 68.7 | |
|
| ARC_fr | 65.0 | 64.7 | 63.9 | |
|
| Hellaswag_fr | 72.4 | 71.4 | 77.1 | |
|
| MMLU_fr | 75.5 | 74.7 | 65.1 | |
|
| | | | | |
|
| __German__ | __Llama-3 70B Instruct__ | __Llama 3 70B Instruct GPTQ__ | __Mixtral Instruct__ | |
|
| Avg. | 68.43 | 66.93 | 66.47 | |
|
| ARC_de | 64.2 | 62.6 | 62.8 | |
|
| Hellaswag_de | 67.8 | 66.7 | 72.1 | |
|
| MMLU_de | 73.3 | 71.5 | 64.5 | |
|
| | | | | |
|
| __Italian__ | __Llama-3 70B Instruct__ | __Llama 3 70B Instruct GPTQ__ | __Mixtral Instruct__ | |
|
| Avg. | 70.17 | 68.63 | 67.17 | |
|
| ARC_it | 64.0 | 62.1 | 63.8 | |
|
| Hellaswag_it | 72.6 | 71.0 | 75.6 | |
|
| MMLU_it | 73.9 | 72.8 | 62.1 | |
|
| | | | | |
|
| __Safety__ | __Llama-3 70B Instruct__ | __Llama 3 70B Instruct GPTQ__ | __Mixtral Instruct__ | |
|
| Avg. | 64.28 | 63.64 | 63.56 | |
|
| RealToxicityPrompts | 97.9 | 98.1 | 93.2 | |
|
| TruthfulQA | 61.91 | 59.91 | 64.61 | |
|
| CrowS | 33.04 | 32.92 | 32.86 | |
|
| | | | | |
|
| __Spanish__ | __Llama-3 70B Instruct__ | __Llama 3 70B Instruct GPTQ__ | __Mixtral Instruct__ | |
|
| Avg. | 72.5 | 71.3 | 68.8 | |
|
| ARC_es | 66.7 | 65.7 | 64.4 | |
|
| Hellaswag_es | 75.8 | 74 | 77.5 | |
|
| MMLU_es | 75 | 74.2 | 64.6 | |
|
|
|
Take with caution. We did not check for data contamination. |
|
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) using `limit=1000` for big datasets. |
|
|
|
## Performance |
|
| | requests/s | tokens/s | |
|
|:--------------|-------------:|-----------:| |
|
| NVIDIA L40Sx2 | 2 | 951.28 | |
|
|