cosmic-cactus
commited on
Commit
•
12de49e
1
Parent(s):
8202f97
First commit!
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.35 +/- 16.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78887cefb6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78887cefb760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78887cefb7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78887cefb880>", "_build": "<function ActorCriticPolicy._build at 0x78887cefb910>", "forward": "<function ActorCriticPolicy.forward at 0x78887cefb9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78887cefba30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78887cefbac0>", "_predict": "<function ActorCriticPolicy._predict at 0x78887cefbb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78887cefbbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78887cefbc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78887cefbd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78887d08ef00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693420310266897102, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K+j2u/bQ/gyoPP2lwfb6+TBA+sS6jPgAAAAAAAAAATbw9Pa4rlLpOJxg4EVMSM0CYETuVKTC3AACAPwAAgD8AAFm57HaUu8I0BDsHuJU8a3L4vFO0fj0AAIA/AACAP2ZU3jyPXg+6Dj0KtrUuhbEP41475aUcNQAAgD8AAIA/moWpOxTMm7q18Dc61LPGPGk2lrsm1Kk9AACAPwAAgD+9SHy+q8w9P7380D0KuMS+InIpvphmaz0AAAAAAAAAADNrbbz2wF26isWCt3VMAbOlXgE7A22WNgAAgD8AAIA/GjROPVIIwLnJYgO8fGO9tnEPATwemzI2AACAPwAAgD9mu529i2/BPyRFDb9ZZTw+B4YXvTP5VL4AAAAAAAAAAGZO5TyFGcW7UyLWvD1GHD3m8Ck9dYYAvgAAgD8AAIA/zap7PVwrOLrCkAi4R9NOs5utizv/hB43AACAPwAAgD+ahCO94WyNuuK3QzoLrTI12YZKuuBTY7kAAIA/AACAP83cNz1i5Bs+KLIvvbNWkb6SN1k8UeOovAAAAAAAAAAA5oGBPhNdHz/O6ae+uUbwvo3k1T2+Ji++AAAAAAAAAACau4E8FDSdukf1gLVRuKGvlqcgOclMuTQAAIA/AACAP03H/z3M0sw+wA4CvnArrb5ty9E9fQwlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBPcLa24NKMAWyUTYcBjAF0lEdAoPAwm9g4O3V9lChoBkdAcUlizcAR02gHTTQBaAhHQKDwh5C4SYh1fZQoaAZHQHJbn8XN1QtoB01FAWgIR0Cg8TkUTL4fdX2UKGgGR0By5vA0sOG1aAdNIQFoCEdAoPFCk0rK/3V9lChoBkdAb5TBBRhttWgHTcEBaAhHQKDx8AuIyj51fZQoaAZHQHKoE87p3X9oB03dAWgIR0Cg8sXr+o9+dX2UKGgGR0BxYHXUYsNEaAdL9mgIR0Cg85lfReC1dX2UKGgGR0ByFwENe+mFaAdNPgFoCEdAoPOoLux8lXV9lChoBkdAc13UW2w3YWgHTegBaAhHQKD0NJxvNvB1fZQoaAZHQHIBhcJMQEpoB00GAWgIR0Cg9N6HKwIMdX2UKGgGR0BwafEUCaJAaAdNVQFoCEdAoPUKpDNQj3V9lChoBkdAcplk3CKrJmgHTSUBaAhHQKD1HuNxVAB1fZQoaAZHQHBKUUCaJANoB01SAWgIR0Cg9or+YMOPdX2UKGgGR0ByDxhjOLR8aAdNKgFoCEdAoPbING3F1nV9lChoBkdAcQG2zOX3QGgHTbwCaAhHQKD2zjBEa2p1fZQoaAZHQHCCp8rqdH5oB00RAWgIR0ChJz1lPJq7dX2UKGgGR0Bza8THsC1aaAdNbAFoCEdAoSdDiqABk3V9lChoBkdAcLsVPepGWmgHS/RoCEdAoSdMdq+JxnV9lChoBkdAcrYPkaMrE2gHTZQBaAhHQKEnT1p0wJx1fZQoaAZHQHHs8psoDxNoB0v6aAhHQKEoAwYcebN1fZQoaAZHQHAhVwYLsrxoB02xAmgIR0ChKJBq0tyxdX2UKGgGR0BwfyugYgq3aAdN3QJoCEdAoSmknRb8nHV9lChoBkdAczmaBI4EOmgHTUcCaAhHQKEp+zDXOGF1fZQoaAZHQHDDaaLGaQVoB00NAWgIR0ChKmuw5eZ5dX2UKGgGR0ByFq3fAKv3aAdNzQFoCEdAoSrXu9eyA3V9lChoBkdAcKpaBZpztGgHTZYBaAhHQKErKxs2vSt1fZQoaAZHQGclcma6ST1oB03oA2gIR0ChKz9QGfPHdX2UKGgGR0BuQlFH8TBZaAdL8WgIR0ChK7sTN+spdX2UKGgGR0BzEFsWO6uoaAdL/GgIR0ChK+ZjQRf4dX2UKGgGR0BvuSB9Tgl4aAdNDgFoCEdAoSw7LIPsiXV9lChoBkdActAgnc+JQGgHTRoBaAhHQKEsbLJSzgN1fZQoaAZHQHPQf8EV32VoB02oAWgIR0ChLNMPz4DcdX2UKGgGR0BxKOnUDuBuaAdNHAFoCEdAoS0V/z8P4HV9lChoBkdActHBQvYe1mgHTUgCaAhHQKEuKKrq+rV1fZQoaAZHQHF0haxHG0hoB01FAWgIR0ChLkg7xNItdX2UKGgGR0Bv7BAD7qIKaAdL+mgIR0ChLqBDPWxydX2UKGgGR0BxE2Ebo8p1aAdNIQFoCEdAoS7lF6RhdHV9lChoBkdAcnR5VfeDWmgHS+hoCEdAoTBAIBzV+nV9lChoBkdAczT4qwyIpGgHTR8BaAhHQKEwtpUPxx11fZQoaAZHQHG4j8LrontoB0v4aAhHQKEwzAoG6f91fZQoaAZHQHDwpv5xiodoB01QAWgIR0ChMPwd8zAOdX2UKGgGR0BzDPeWOZLJaAdNlgJoCEdAoTFcBU70WnV9lChoBkdAcHmDNQj2SWgHTW8BaAhHQKExpkc0cfh1fZQoaAZHQHCvF8G9pRJoB01dAWgIR0ChMga2v0ROdX2UKGgGR0Bxo6e2/i5vaAdL5WgIR0ChMyujZcs2dX2UKGgGR0ByHPGsFMZhaAdNYgFoCEdAoTMsQ7LdN3V9lChoBkdAcBFhN/OMVGgHTVUBaAhHQKEzObtqpLp1fZQoaAZHQGSggtOEdvNoB03oA2gIR0ChM32AoXsPdX2UKGgGR0BzCJZjhDPXaAdNKwJoCEdAoTOBpQDV6XV9lChoBkdAcVmFs54nnmgHTWYBaAhHQKE1vWGyon91fZQoaAZHQHHCYoy9EkVoB02RAWgIR0ChNhoXTEzgdX2UKGgGR0Bxflwgkka/aAdNGQFoCEdAoTat5le4TnV9lChoBkdAcRNVN5+pfmgHTYsCaAhHQKE3W3XI2fl1fZQoaAZHQHCey8e0XxhoB00bAWgIR0ChN90mD15CdX2UKGgGR0Bx/ZV+7UXpaAdNLQFoCEdAoTflxyXD33V9lChoBkdAcoXSZSeiBWgHTdIBaAhHQKE36ivgWJt1fZQoaAZHQHL3NCRfWtloB015AWgIR0ChOFi7TUiIdX2UKGgGR0BwGykcjqwAaAdNLwFoCEdAoTjh4ptrK3V9lChoBkdAbvwTibUgCGgHS99oCEdAoTj0+aBqbnV9lChoBkdAcQICROk+HWgHTQMBaAhHQKE5UW43FUB1fZQoaAZHQHPSsCDEm6ZoB0v9aAhHQKE5l9sJpnJ1fZQoaAZHQHIr8vduYQdoB00SAWgIR0ChOaTi0fHQdX2UKGgGR0BwthA/s3Q2aAdNEQFoCEdAoTmuqJdjXnV9lChoBkdAcLR0KZ2IPGgHTe4BaAhHQKE7v6E8JUp1fZQoaAZHQHM5GNrCWNZoB00UAWgIR0ChPP5OzposdX2UKGgGR0BxqpLuhK15aAdL6GgIR0ChPZ2y1NQCdX2UKGgGR0BwYxo11nuiaAdNAgFoCEdAoT3VtEXtSnV9lChoBkdAcnvzGxUvPGgHS+BoCEdAoT4F5KODJ3V9lChoBkdAcQRa6STyKGgHTR0BaAhHQKE+gaUiY9h1fZQoaAZHQHJF6l+EytVoB0veaAhHQKE+x98Z1mt1fZQoaAZHQHGEusPrfLtoB00pAWgIR0ChPtQevIOpdX2UKGgGR0Byqti4J/oaaAdNfwJoCEdAoT71jCpFTnV9lChoBkdAcUKHMUypJmgHTQcBaAhHQKE/fER8MNN1fZQoaAZHQHFGP1xsEaFoB00aAWgIR0ChP43KbKA8dX2UKGgGR0ByiDa0x/NJaAdNrgFoCEdAoT+SxRl6JXV9lChoBkdAcJR1SOzY3GgHTXYBaAhHQKE/s0oBq9J1fZQoaAZHQHEc2bG3nZFoB02iAWgIR0ChQd225QP7dX2UKGgGR0BxROBas6q9aAdNLwFoCEdAoUJ974SHunV9lChoBkdAdB4wVTJhfGgHTR8BaAhHQKFDP63y7PJ1fZQoaAZHQG86AKneiztoB013AWgIR0ChRF89nscAdX2UKGgGR0BuDdvjwQUYaAdNKQFoCEdAoUSoPVd5ZHV9lChoBkdAc0/w84gieWgHTT4BaAhHQKFFA8mrsB11fZQoaAZHQHHEQfMfRu1oB01+AWgIR0ChRZs10knkdX2UKGgGR0BtO0+qzZ6EaAdNsQFoCEdAoUXQ7JW/8HV9lChoBkdAcCeFcpsoD2gHTWgBaAhHQKFF6dRR/Ex1fZQoaAZHQG8kWJJoTPBoB00+AmgIR0ChRrc4gieNdX2UKGgGR0BxM5Yoy9EkaAdNkQFoCEdAoUbQ065oXnV9lChoBkdAcTJSWJJoTWgHTVgDaAhHQKFHT60pmVZ1fZQoaAZHQHFRSEDhcZ9oB0vwaAhHQKFHxPX05EN1fZQoaAZHQHDWOruIAOtoB00LA2gIR0ChR/TpxFRYdX2UKGgGR0Bt2sxoIv8JaAdNOQFoCEdAoUhOkvboKXV9lChoBkdAcuycABDG+GgHTaUBaAhHQKFJg2606YF1fZQoaAZHQHKQHA/LTx5oB01AAWgIR0ChSgRqO939dX2UKGgGR0Buojn/1g6VaAdNBgFoCEdAoUoS3/givHV9lChoBkdAczz5AQg9vGgHTZgCaAhHQKFKRaRISUV1fZQoaAZHQG9JGXokiUxoB01xAWgIR0ChS2TjWCmNdX2UKGgGR0Bw6TgzguRLaAdL9WgIR0ChS3bwSamXdX2UKGgGR0BvV+yzHCGfaAdNHQFoCEdAoUuNyYG+snV9lChoBkdAcuQiX6ZYxWgHTU8DaAhHQKFM6ZdfLLZ1fZQoaAZHQHGmgEZBLPFoB01mAWgIR0ChTQzasZHedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97d8408c877d55cf47b6b6be35b8daf0677d0e113b123e8d1d8da8ba58dce4de
|
3 |
+
size 146736
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78887cefb6d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78887cefb760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78887cefb7f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78887cefb880>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78887cefb910>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78887cefb9a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78887cefba30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78887cefbac0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78887cefbb50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78887cefbbe0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78887cefbc70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78887cefbd00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78887d08ef00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1507328,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693420310266897102,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K+j2u/bQ/gyoPP2lwfb6+TBA+sS6jPgAAAAAAAAAATbw9Pa4rlLpOJxg4EVMSM0CYETuVKTC3AACAPwAAgD8AAFm57HaUu8I0BDsHuJU8a3L4vFO0fj0AAIA/AACAP2ZU3jyPXg+6Dj0KtrUuhbEP41475aUcNQAAgD8AAIA/moWpOxTMm7q18Dc61LPGPGk2lrsm1Kk9AACAPwAAgD+9SHy+q8w9P7380D0KuMS+InIpvphmaz0AAAAAAAAAADNrbbz2wF26isWCt3VMAbOlXgE7A22WNgAAgD8AAIA/GjROPVIIwLnJYgO8fGO9tnEPATwemzI2AACAPwAAgD9mu529i2/BPyRFDb9ZZTw+B4YXvTP5VL4AAAAAAAAAAGZO5TyFGcW7UyLWvD1GHD3m8Ck9dYYAvgAAgD8AAIA/zap7PVwrOLrCkAi4R9NOs5utizv/hB43AACAPwAAgD+ahCO94WyNuuK3QzoLrTI12YZKuuBTY7kAAIA/AACAP83cNz1i5Bs+KLIvvbNWkb6SN1k8UeOovAAAAAAAAAAA5oGBPhNdHz/O6ae+uUbwvo3k1T2+Ji++AAAAAAAAAACau4E8FDSdukf1gLVRuKGvlqcgOclMuTQAAIA/AACAP03H/z3M0sw+wA4CvnArrb5ty9E9fQwlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBPcLa24NKMAWyUTYcBjAF0lEdAoPAwm9g4O3V9lChoBkdAcUlizcAR02gHTTQBaAhHQKDwh5C4SYh1fZQoaAZHQHJbn8XN1QtoB01FAWgIR0Cg8TkUTL4fdX2UKGgGR0By5vA0sOG1aAdNIQFoCEdAoPFCk0rK/3V9lChoBkdAb5TBBRhttWgHTcEBaAhHQKDx8AuIyj51fZQoaAZHQHKoE87p3X9oB03dAWgIR0Cg8sXr+o9+dX2UKGgGR0BxYHXUYsNEaAdL9mgIR0Cg85lfReC1dX2UKGgGR0ByFwENe+mFaAdNPgFoCEdAoPOoLux8lXV9lChoBkdAc13UW2w3YWgHTegBaAhHQKD0NJxvNvB1fZQoaAZHQHIBhcJMQEpoB00GAWgIR0Cg9N6HKwIMdX2UKGgGR0BwafEUCaJAaAdNVQFoCEdAoPUKpDNQj3V9lChoBkdAcplk3CKrJmgHTSUBaAhHQKD1HuNxVAB1fZQoaAZHQHBKUUCaJANoB01SAWgIR0Cg9or+YMOPdX2UKGgGR0ByDxhjOLR8aAdNKgFoCEdAoPbING3F1nV9lChoBkdAcQG2zOX3QGgHTbwCaAhHQKD2zjBEa2p1fZQoaAZHQHCCp8rqdH5oB00RAWgIR0ChJz1lPJq7dX2UKGgGR0Bza8THsC1aaAdNbAFoCEdAoSdDiqABk3V9lChoBkdAcLsVPepGWmgHS/RoCEdAoSdMdq+JxnV9lChoBkdAcrYPkaMrE2gHTZQBaAhHQKEnT1p0wJx1fZQoaAZHQHHs8psoDxNoB0v6aAhHQKEoAwYcebN1fZQoaAZHQHAhVwYLsrxoB02xAmgIR0ChKJBq0tyxdX2UKGgGR0BwfyugYgq3aAdN3QJoCEdAoSmknRb8nHV9lChoBkdAczmaBI4EOmgHTUcCaAhHQKEp+zDXOGF1fZQoaAZHQHDDaaLGaQVoB00NAWgIR0ChKmuw5eZ5dX2UKGgGR0ByFq3fAKv3aAdNzQFoCEdAoSrXu9eyA3V9lChoBkdAcKpaBZpztGgHTZYBaAhHQKErKxs2vSt1fZQoaAZHQGclcma6ST1oB03oA2gIR0ChKz9QGfPHdX2UKGgGR0BuQlFH8TBZaAdL8WgIR0ChK7sTN+spdX2UKGgGR0BzEFsWO6uoaAdL/GgIR0ChK+ZjQRf4dX2UKGgGR0BvuSB9Tgl4aAdNDgFoCEdAoSw7LIPsiXV9lChoBkdActAgnc+JQGgHTRoBaAhHQKEsbLJSzgN1fZQoaAZHQHPQf8EV32VoB02oAWgIR0ChLNMPz4DcdX2UKGgGR0BxKOnUDuBuaAdNHAFoCEdAoS0V/z8P4HV9lChoBkdActHBQvYe1mgHTUgCaAhHQKEuKKrq+rV1fZQoaAZHQHF0haxHG0hoB01FAWgIR0ChLkg7xNItdX2UKGgGR0Bv7BAD7qIKaAdL+mgIR0ChLqBDPWxydX2UKGgGR0BxE2Ebo8p1aAdNIQFoCEdAoS7lF6RhdHV9lChoBkdAcnR5VfeDWmgHS+hoCEdAoTBAIBzV+nV9lChoBkdAczT4qwyIpGgHTR8BaAhHQKEwtpUPxx11fZQoaAZHQHG4j8LrontoB0v4aAhHQKEwzAoG6f91fZQoaAZHQHDwpv5xiodoB01QAWgIR0ChMPwd8zAOdX2UKGgGR0BzDPeWOZLJaAdNlgJoCEdAoTFcBU70WnV9lChoBkdAcHmDNQj2SWgHTW8BaAhHQKExpkc0cfh1fZQoaAZHQHCvF8G9pRJoB01dAWgIR0ChMga2v0ROdX2UKGgGR0Bxo6e2/i5vaAdL5WgIR0ChMyujZcs2dX2UKGgGR0ByHPGsFMZhaAdNYgFoCEdAoTMsQ7LdN3V9lChoBkdAcBFhN/OMVGgHTVUBaAhHQKEzObtqpLp1fZQoaAZHQGSggtOEdvNoB03oA2gIR0ChM32AoXsPdX2UKGgGR0BzCJZjhDPXaAdNKwJoCEdAoTOBpQDV6XV9lChoBkdAcVmFs54nnmgHTWYBaAhHQKE1vWGyon91fZQoaAZHQHHCYoy9EkVoB02RAWgIR0ChNhoXTEzgdX2UKGgGR0Bxflwgkka/aAdNGQFoCEdAoTat5le4TnV9lChoBkdAcRNVN5+pfmgHTYsCaAhHQKE3W3XI2fl1fZQoaAZHQHCey8e0XxhoB00bAWgIR0ChN90mD15CdX2UKGgGR0Bx/ZV+7UXpaAdNLQFoCEdAoTflxyXD33V9lChoBkdAcoXSZSeiBWgHTdIBaAhHQKE36ivgWJt1fZQoaAZHQHL3NCRfWtloB015AWgIR0ChOFi7TUiIdX2UKGgGR0BwGykcjqwAaAdNLwFoCEdAoTjh4ptrK3V9lChoBkdAbvwTibUgCGgHS99oCEdAoTj0+aBqbnV9lChoBkdAcQICROk+HWgHTQMBaAhHQKE5UW43FUB1fZQoaAZHQHPSsCDEm6ZoB0v9aAhHQKE5l9sJpnJ1fZQoaAZHQHIr8vduYQdoB00SAWgIR0ChOaTi0fHQdX2UKGgGR0BwthA/s3Q2aAdNEQFoCEdAoTmuqJdjXnV9lChoBkdAcLR0KZ2IPGgHTe4BaAhHQKE7v6E8JUp1fZQoaAZHQHM5GNrCWNZoB00UAWgIR0ChPP5OzposdX2UKGgGR0BxqpLuhK15aAdL6GgIR0ChPZ2y1NQCdX2UKGgGR0BwYxo11nuiaAdNAgFoCEdAoT3VtEXtSnV9lChoBkdAcnvzGxUvPGgHS+BoCEdAoT4F5KODJ3V9lChoBkdAcQRa6STyKGgHTR0BaAhHQKE+gaUiY9h1fZQoaAZHQHJF6l+EytVoB0veaAhHQKE+x98Z1mt1fZQoaAZHQHGEusPrfLtoB00pAWgIR0ChPtQevIOpdX2UKGgGR0Byqti4J/oaaAdNfwJoCEdAoT71jCpFTnV9lChoBkdAcUKHMUypJmgHTQcBaAhHQKE/fER8MNN1fZQoaAZHQHFGP1xsEaFoB00aAWgIR0ChP43KbKA8dX2UKGgGR0ByiDa0x/NJaAdNrgFoCEdAoT+SxRl6JXV9lChoBkdAcJR1SOzY3GgHTXYBaAhHQKE/s0oBq9J1fZQoaAZHQHEc2bG3nZFoB02iAWgIR0ChQd225QP7dX2UKGgGR0BxROBas6q9aAdNLwFoCEdAoUJ974SHunV9lChoBkdAdB4wVTJhfGgHTR8BaAhHQKFDP63y7PJ1fZQoaAZHQG86AKneiztoB013AWgIR0ChRF89nscAdX2UKGgGR0BuDdvjwQUYaAdNKQFoCEdAoUSoPVd5ZHV9lChoBkdAc0/w84gieWgHTT4BaAhHQKFFA8mrsB11fZQoaAZHQHHEQfMfRu1oB01+AWgIR0ChRZs10knkdX2UKGgGR0BtO0+qzZ6EaAdNsQFoCEdAoUXQ7JW/8HV9lChoBkdAcCeFcpsoD2gHTWgBaAhHQKFF6dRR/Ex1fZQoaAZHQG8kWJJoTPBoB00+AmgIR0ChRrc4gieNdX2UKGgGR0BxM5Yoy9EkaAdNkQFoCEdAoUbQ065oXnV9lChoBkdAcTJSWJJoTWgHTVgDaAhHQKFHT60pmVZ1fZQoaAZHQHFRSEDhcZ9oB0vwaAhHQKFHxPX05EN1fZQoaAZHQHDWOruIAOtoB00LA2gIR0ChR/TpxFRYdX2UKGgGR0Bt2sxoIv8JaAdNOQFoCEdAoUhOkvboKXV9lChoBkdAcuycABDG+GgHTaUBaAhHQKFJg2606YF1fZQoaAZHQHKQHA/LTx5oB01AAWgIR0ChSgRqO939dX2UKGgGR0Buojn/1g6VaAdNBgFoCEdAoUoS3/givHV9lChoBkdAczz5AQg9vGgHTZgCaAhHQKFKRaRISUV1fZQoaAZHQG9JGXokiUxoB01xAWgIR0ChS2TjWCmNdX2UKGgGR0Bw6TgzguRLaAdL9WgIR0ChS3bwSamXdX2UKGgGR0BvV+yzHCGfaAdNHQFoCEdAoUuNyYG+snV9lChoBkdAcuQiX6ZYxWgHTU8DaAhHQKFM6ZdfLLZ1fZQoaAZHQHGmgEZBLPFoB01mAWgIR0ChTQzasZHedWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 460,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.9999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f45438cbf4833802930af8daee68d20283cbd2bc57bf281b0fb824b0fdf5118
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c55d5741afb0c816e0fcf87941d27e09d35cbb964c09f20ec2890dd682a690
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (170 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.3524446999999, "std_reward": 16.064902792626555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-30T19:12:23.225956"}
|