cosmic-cactus commited on
Commit
12de49e
1 Parent(s): 8202f97

First commit!

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.35 +/- 16.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78887cefb6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78887cefb760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78887cefb7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78887cefb880>", "_build": "<function ActorCriticPolicy._build at 0x78887cefb910>", "forward": "<function ActorCriticPolicy.forward at 0x78887cefb9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78887cefba30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78887cefbac0>", "_predict": "<function ActorCriticPolicy._predict at 0x78887cefbb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78887cefbbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78887cefbc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78887cefbd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78887d08ef00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693420310266897102, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K+j2u/bQ/gyoPP2lwfb6+TBA+sS6jPgAAAAAAAAAATbw9Pa4rlLpOJxg4EVMSM0CYETuVKTC3AACAPwAAgD8AAFm57HaUu8I0BDsHuJU8a3L4vFO0fj0AAIA/AACAP2ZU3jyPXg+6Dj0KtrUuhbEP41475aUcNQAAgD8AAIA/moWpOxTMm7q18Dc61LPGPGk2lrsm1Kk9AACAPwAAgD+9SHy+q8w9P7380D0KuMS+InIpvphmaz0AAAAAAAAAADNrbbz2wF26isWCt3VMAbOlXgE7A22WNgAAgD8AAIA/GjROPVIIwLnJYgO8fGO9tnEPATwemzI2AACAPwAAgD9mu529i2/BPyRFDb9ZZTw+B4YXvTP5VL4AAAAAAAAAAGZO5TyFGcW7UyLWvD1GHD3m8Ck9dYYAvgAAgD8AAIA/zap7PVwrOLrCkAi4R9NOs5utizv/hB43AACAPwAAgD+ahCO94WyNuuK3QzoLrTI12YZKuuBTY7kAAIA/AACAP83cNz1i5Bs+KLIvvbNWkb6SN1k8UeOovAAAAAAAAAAA5oGBPhNdHz/O6ae+uUbwvo3k1T2+Ji++AAAAAAAAAACau4E8FDSdukf1gLVRuKGvlqcgOclMuTQAAIA/AACAP03H/z3M0sw+wA4CvnArrb5ty9E9fQwlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBPcLa24NKMAWyUTYcBjAF0lEdAoPAwm9g4O3V9lChoBkdAcUlizcAR02gHTTQBaAhHQKDwh5C4SYh1fZQoaAZHQHJbn8XN1QtoB01FAWgIR0Cg8TkUTL4fdX2UKGgGR0By5vA0sOG1aAdNIQFoCEdAoPFCk0rK/3V9lChoBkdAb5TBBRhttWgHTcEBaAhHQKDx8AuIyj51fZQoaAZHQHKoE87p3X9oB03dAWgIR0Cg8sXr+o9+dX2UKGgGR0BxYHXUYsNEaAdL9mgIR0Cg85lfReC1dX2UKGgGR0ByFwENe+mFaAdNPgFoCEdAoPOoLux8lXV9lChoBkdAc13UW2w3YWgHTegBaAhHQKD0NJxvNvB1fZQoaAZHQHIBhcJMQEpoB00GAWgIR0Cg9N6HKwIMdX2UKGgGR0BwafEUCaJAaAdNVQFoCEdAoPUKpDNQj3V9lChoBkdAcplk3CKrJmgHTSUBaAhHQKD1HuNxVAB1fZQoaAZHQHBKUUCaJANoB01SAWgIR0Cg9or+YMOPdX2UKGgGR0ByDxhjOLR8aAdNKgFoCEdAoPbING3F1nV9lChoBkdAcQG2zOX3QGgHTbwCaAhHQKD2zjBEa2p1fZQoaAZHQHCCp8rqdH5oB00RAWgIR0ChJz1lPJq7dX2UKGgGR0Bza8THsC1aaAdNbAFoCEdAoSdDiqABk3V9lChoBkdAcLsVPepGWmgHS/RoCEdAoSdMdq+JxnV9lChoBkdAcrYPkaMrE2gHTZQBaAhHQKEnT1p0wJx1fZQoaAZHQHHs8psoDxNoB0v6aAhHQKEoAwYcebN1fZQoaAZHQHAhVwYLsrxoB02xAmgIR0ChKJBq0tyxdX2UKGgGR0BwfyugYgq3aAdN3QJoCEdAoSmknRb8nHV9lChoBkdAczmaBI4EOmgHTUcCaAhHQKEp+zDXOGF1fZQoaAZHQHDDaaLGaQVoB00NAWgIR0ChKmuw5eZ5dX2UKGgGR0ByFq3fAKv3aAdNzQFoCEdAoSrXu9eyA3V9lChoBkdAcKpaBZpztGgHTZYBaAhHQKErKxs2vSt1fZQoaAZHQGclcma6ST1oB03oA2gIR0ChKz9QGfPHdX2UKGgGR0BuQlFH8TBZaAdL8WgIR0ChK7sTN+spdX2UKGgGR0BzEFsWO6uoaAdL/GgIR0ChK+ZjQRf4dX2UKGgGR0BvuSB9Tgl4aAdNDgFoCEdAoSw7LIPsiXV9lChoBkdActAgnc+JQGgHTRoBaAhHQKEsbLJSzgN1fZQoaAZHQHPQf8EV32VoB02oAWgIR0ChLNMPz4DcdX2UKGgGR0BxKOnUDuBuaAdNHAFoCEdAoS0V/z8P4HV9lChoBkdActHBQvYe1mgHTUgCaAhHQKEuKKrq+rV1fZQoaAZHQHF0haxHG0hoB01FAWgIR0ChLkg7xNItdX2UKGgGR0Bv7BAD7qIKaAdL+mgIR0ChLqBDPWxydX2UKGgGR0BxE2Ebo8p1aAdNIQFoCEdAoS7lF6RhdHV9lChoBkdAcnR5VfeDWmgHS+hoCEdAoTBAIBzV+nV9lChoBkdAczT4qwyIpGgHTR8BaAhHQKEwtpUPxx11fZQoaAZHQHG4j8LrontoB0v4aAhHQKEwzAoG6f91fZQoaAZHQHDwpv5xiodoB01QAWgIR0ChMPwd8zAOdX2UKGgGR0BzDPeWOZLJaAdNlgJoCEdAoTFcBU70WnV9lChoBkdAcHmDNQj2SWgHTW8BaAhHQKExpkc0cfh1fZQoaAZHQHCvF8G9pRJoB01dAWgIR0ChMga2v0ROdX2UKGgGR0Bxo6e2/i5vaAdL5WgIR0ChMyujZcs2dX2UKGgGR0ByHPGsFMZhaAdNYgFoCEdAoTMsQ7LdN3V9lChoBkdAcBFhN/OMVGgHTVUBaAhHQKEzObtqpLp1fZQoaAZHQGSggtOEdvNoB03oA2gIR0ChM32AoXsPdX2UKGgGR0BzCJZjhDPXaAdNKwJoCEdAoTOBpQDV6XV9lChoBkdAcVmFs54nnmgHTWYBaAhHQKE1vWGyon91fZQoaAZHQHHCYoy9EkVoB02RAWgIR0ChNhoXTEzgdX2UKGgGR0Bxflwgkka/aAdNGQFoCEdAoTat5le4TnV9lChoBkdAcRNVN5+pfmgHTYsCaAhHQKE3W3XI2fl1fZQoaAZHQHCey8e0XxhoB00bAWgIR0ChN90mD15CdX2UKGgGR0Bx/ZV+7UXpaAdNLQFoCEdAoTflxyXD33V9lChoBkdAcoXSZSeiBWgHTdIBaAhHQKE36ivgWJt1fZQoaAZHQHL3NCRfWtloB015AWgIR0ChOFi7TUiIdX2UKGgGR0BwGykcjqwAaAdNLwFoCEdAoTjh4ptrK3V9lChoBkdAbvwTibUgCGgHS99oCEdAoTj0+aBqbnV9lChoBkdAcQICROk+HWgHTQMBaAhHQKE5UW43FUB1fZQoaAZHQHPSsCDEm6ZoB0v9aAhHQKE5l9sJpnJ1fZQoaAZHQHIr8vduYQdoB00SAWgIR0ChOaTi0fHQdX2UKGgGR0BwthA/s3Q2aAdNEQFoCEdAoTmuqJdjXnV9lChoBkdAcLR0KZ2IPGgHTe4BaAhHQKE7v6E8JUp1fZQoaAZHQHM5GNrCWNZoB00UAWgIR0ChPP5OzposdX2UKGgGR0BxqpLuhK15aAdL6GgIR0ChPZ2y1NQCdX2UKGgGR0BwYxo11nuiaAdNAgFoCEdAoT3VtEXtSnV9lChoBkdAcnvzGxUvPGgHS+BoCEdAoT4F5KODJ3V9lChoBkdAcQRa6STyKGgHTR0BaAhHQKE+gaUiY9h1fZQoaAZHQHJF6l+EytVoB0veaAhHQKE+x98Z1mt1fZQoaAZHQHGEusPrfLtoB00pAWgIR0ChPtQevIOpdX2UKGgGR0Byqti4J/oaaAdNfwJoCEdAoT71jCpFTnV9lChoBkdAcUKHMUypJmgHTQcBaAhHQKE/fER8MNN1fZQoaAZHQHFGP1xsEaFoB00aAWgIR0ChP43KbKA8dX2UKGgGR0ByiDa0x/NJaAdNrgFoCEdAoT+SxRl6JXV9lChoBkdAcJR1SOzY3GgHTXYBaAhHQKE/s0oBq9J1fZQoaAZHQHEc2bG3nZFoB02iAWgIR0ChQd225QP7dX2UKGgGR0BxROBas6q9aAdNLwFoCEdAoUJ974SHunV9lChoBkdAdB4wVTJhfGgHTR8BaAhHQKFDP63y7PJ1fZQoaAZHQG86AKneiztoB013AWgIR0ChRF89nscAdX2UKGgGR0BuDdvjwQUYaAdNKQFoCEdAoUSoPVd5ZHV9lChoBkdAc0/w84gieWgHTT4BaAhHQKFFA8mrsB11fZQoaAZHQHHEQfMfRu1oB01+AWgIR0ChRZs10knkdX2UKGgGR0BtO0+qzZ6EaAdNsQFoCEdAoUXQ7JW/8HV9lChoBkdAcCeFcpsoD2gHTWgBaAhHQKFF6dRR/Ex1fZQoaAZHQG8kWJJoTPBoB00+AmgIR0ChRrc4gieNdX2UKGgGR0BxM5Yoy9EkaAdNkQFoCEdAoUbQ065oXnV9lChoBkdAcTJSWJJoTWgHTVgDaAhHQKFHT60pmVZ1fZQoaAZHQHFRSEDhcZ9oB0vwaAhHQKFHxPX05EN1fZQoaAZHQHDWOruIAOtoB00LA2gIR0ChR/TpxFRYdX2UKGgGR0Bt2sxoIv8JaAdNOQFoCEdAoUhOkvboKXV9lChoBkdAcuycABDG+GgHTaUBaAhHQKFJg2606YF1fZQoaAZHQHKQHA/LTx5oB01AAWgIR0ChSgRqO939dX2UKGgGR0Buojn/1g6VaAdNBgFoCEdAoUoS3/givHV9lChoBkdAczz5AQg9vGgHTZgCaAhHQKFKRaRISUV1fZQoaAZHQG9JGXokiUxoB01xAWgIR0ChS2TjWCmNdX2UKGgGR0Bw6TgzguRLaAdL9WgIR0ChS3bwSamXdX2UKGgGR0BvV+yzHCGfaAdNHQFoCEdAoUuNyYG+snV9lChoBkdAcuQiX6ZYxWgHTU8DaAhHQKFM6ZdfLLZ1fZQoaAZHQHGmgEZBLPFoB01mAWgIR0ChTQzasZHedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97d8408c877d55cf47b6b6be35b8daf0677d0e113b123e8d1d8da8ba58dce4de
3
+ size 146736
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78887cefb6d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78887cefb760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78887cefb7f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78887cefb880>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78887cefb910>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78887cefb9a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78887cefba30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78887cefbac0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78887cefbb50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78887cefbbe0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78887cefbc70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78887cefbd00>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78887d08ef00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1693420310266897102,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K+j2u/bQ/gyoPP2lwfb6+TBA+sS6jPgAAAAAAAAAATbw9Pa4rlLpOJxg4EVMSM0CYETuVKTC3AACAPwAAgD8AAFm57HaUu8I0BDsHuJU8a3L4vFO0fj0AAIA/AACAP2ZU3jyPXg+6Dj0KtrUuhbEP41475aUcNQAAgD8AAIA/moWpOxTMm7q18Dc61LPGPGk2lrsm1Kk9AACAPwAAgD+9SHy+q8w9P7380D0KuMS+InIpvphmaz0AAAAAAAAAADNrbbz2wF26isWCt3VMAbOlXgE7A22WNgAAgD8AAIA/GjROPVIIwLnJYgO8fGO9tnEPATwemzI2AACAPwAAgD9mu529i2/BPyRFDb9ZZTw+B4YXvTP5VL4AAAAAAAAAAGZO5TyFGcW7UyLWvD1GHD3m8Ck9dYYAvgAAgD8AAIA/zap7PVwrOLrCkAi4R9NOs5utizv/hB43AACAPwAAgD+ahCO94WyNuuK3QzoLrTI12YZKuuBTY7kAAIA/AACAP83cNz1i5Bs+KLIvvbNWkb6SN1k8UeOovAAAAAAAAAAA5oGBPhNdHz/O6ae+uUbwvo3k1T2+Ji++AAAAAAAAAACau4E8FDSdukf1gLVRuKGvlqcgOclMuTQAAIA/AACAP03H/z3M0sw+wA4CvnArrb5ty9E9fQwlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBPcLa24NKMAWyUTYcBjAF0lEdAoPAwm9g4O3V9lChoBkdAcUlizcAR02gHTTQBaAhHQKDwh5C4SYh1fZQoaAZHQHJbn8XN1QtoB01FAWgIR0Cg8TkUTL4fdX2UKGgGR0By5vA0sOG1aAdNIQFoCEdAoPFCk0rK/3V9lChoBkdAb5TBBRhttWgHTcEBaAhHQKDx8AuIyj51fZQoaAZHQHKoE87p3X9oB03dAWgIR0Cg8sXr+o9+dX2UKGgGR0BxYHXUYsNEaAdL9mgIR0Cg85lfReC1dX2UKGgGR0ByFwENe+mFaAdNPgFoCEdAoPOoLux8lXV9lChoBkdAc13UW2w3YWgHTegBaAhHQKD0NJxvNvB1fZQoaAZHQHIBhcJMQEpoB00GAWgIR0Cg9N6HKwIMdX2UKGgGR0BwafEUCaJAaAdNVQFoCEdAoPUKpDNQj3V9lChoBkdAcplk3CKrJmgHTSUBaAhHQKD1HuNxVAB1fZQoaAZHQHBKUUCaJANoB01SAWgIR0Cg9or+YMOPdX2UKGgGR0ByDxhjOLR8aAdNKgFoCEdAoPbING3F1nV9lChoBkdAcQG2zOX3QGgHTbwCaAhHQKD2zjBEa2p1fZQoaAZHQHCCp8rqdH5oB00RAWgIR0ChJz1lPJq7dX2UKGgGR0Bza8THsC1aaAdNbAFoCEdAoSdDiqABk3V9lChoBkdAcLsVPepGWmgHS/RoCEdAoSdMdq+JxnV9lChoBkdAcrYPkaMrE2gHTZQBaAhHQKEnT1p0wJx1fZQoaAZHQHHs8psoDxNoB0v6aAhHQKEoAwYcebN1fZQoaAZHQHAhVwYLsrxoB02xAmgIR0ChKJBq0tyxdX2UKGgGR0BwfyugYgq3aAdN3QJoCEdAoSmknRb8nHV9lChoBkdAczmaBI4EOmgHTUcCaAhHQKEp+zDXOGF1fZQoaAZHQHDDaaLGaQVoB00NAWgIR0ChKmuw5eZ5dX2UKGgGR0ByFq3fAKv3aAdNzQFoCEdAoSrXu9eyA3V9lChoBkdAcKpaBZpztGgHTZYBaAhHQKErKxs2vSt1fZQoaAZHQGclcma6ST1oB03oA2gIR0ChKz9QGfPHdX2UKGgGR0BuQlFH8TBZaAdL8WgIR0ChK7sTN+spdX2UKGgGR0BzEFsWO6uoaAdL/GgIR0ChK+ZjQRf4dX2UKGgGR0BvuSB9Tgl4aAdNDgFoCEdAoSw7LIPsiXV9lChoBkdActAgnc+JQGgHTRoBaAhHQKEsbLJSzgN1fZQoaAZHQHPQf8EV32VoB02oAWgIR0ChLNMPz4DcdX2UKGgGR0BxKOnUDuBuaAdNHAFoCEdAoS0V/z8P4HV9lChoBkdActHBQvYe1mgHTUgCaAhHQKEuKKrq+rV1fZQoaAZHQHF0haxHG0hoB01FAWgIR0ChLkg7xNItdX2UKGgGR0Bv7BAD7qIKaAdL+mgIR0ChLqBDPWxydX2UKGgGR0BxE2Ebo8p1aAdNIQFoCEdAoS7lF6RhdHV9lChoBkdAcnR5VfeDWmgHS+hoCEdAoTBAIBzV+nV9lChoBkdAczT4qwyIpGgHTR8BaAhHQKEwtpUPxx11fZQoaAZHQHG4j8LrontoB0v4aAhHQKEwzAoG6f91fZQoaAZHQHDwpv5xiodoB01QAWgIR0ChMPwd8zAOdX2UKGgGR0BzDPeWOZLJaAdNlgJoCEdAoTFcBU70WnV9lChoBkdAcHmDNQj2SWgHTW8BaAhHQKExpkc0cfh1fZQoaAZHQHCvF8G9pRJoB01dAWgIR0ChMga2v0ROdX2UKGgGR0Bxo6e2/i5vaAdL5WgIR0ChMyujZcs2dX2UKGgGR0ByHPGsFMZhaAdNYgFoCEdAoTMsQ7LdN3V9lChoBkdAcBFhN/OMVGgHTVUBaAhHQKEzObtqpLp1fZQoaAZHQGSggtOEdvNoB03oA2gIR0ChM32AoXsPdX2UKGgGR0BzCJZjhDPXaAdNKwJoCEdAoTOBpQDV6XV9lChoBkdAcVmFs54nnmgHTWYBaAhHQKE1vWGyon91fZQoaAZHQHHCYoy9EkVoB02RAWgIR0ChNhoXTEzgdX2UKGgGR0Bxflwgkka/aAdNGQFoCEdAoTat5le4TnV9lChoBkdAcRNVN5+pfmgHTYsCaAhHQKE3W3XI2fl1fZQoaAZHQHCey8e0XxhoB00bAWgIR0ChN90mD15CdX2UKGgGR0Bx/ZV+7UXpaAdNLQFoCEdAoTflxyXD33V9lChoBkdAcoXSZSeiBWgHTdIBaAhHQKE36ivgWJt1fZQoaAZHQHL3NCRfWtloB015AWgIR0ChOFi7TUiIdX2UKGgGR0BwGykcjqwAaAdNLwFoCEdAoTjh4ptrK3V9lChoBkdAbvwTibUgCGgHS99oCEdAoTj0+aBqbnV9lChoBkdAcQICROk+HWgHTQMBaAhHQKE5UW43FUB1fZQoaAZHQHPSsCDEm6ZoB0v9aAhHQKE5l9sJpnJ1fZQoaAZHQHIr8vduYQdoB00SAWgIR0ChOaTi0fHQdX2UKGgGR0BwthA/s3Q2aAdNEQFoCEdAoTmuqJdjXnV9lChoBkdAcLR0KZ2IPGgHTe4BaAhHQKE7v6E8JUp1fZQoaAZHQHM5GNrCWNZoB00UAWgIR0ChPP5OzposdX2UKGgGR0BxqpLuhK15aAdL6GgIR0ChPZ2y1NQCdX2UKGgGR0BwYxo11nuiaAdNAgFoCEdAoT3VtEXtSnV9lChoBkdAcnvzGxUvPGgHS+BoCEdAoT4F5KODJ3V9lChoBkdAcQRa6STyKGgHTR0BaAhHQKE+gaUiY9h1fZQoaAZHQHJF6l+EytVoB0veaAhHQKE+x98Z1mt1fZQoaAZHQHGEusPrfLtoB00pAWgIR0ChPtQevIOpdX2UKGgGR0Byqti4J/oaaAdNfwJoCEdAoT71jCpFTnV9lChoBkdAcUKHMUypJmgHTQcBaAhHQKE/fER8MNN1fZQoaAZHQHFGP1xsEaFoB00aAWgIR0ChP43KbKA8dX2UKGgGR0ByiDa0x/NJaAdNrgFoCEdAoT+SxRl6JXV9lChoBkdAcJR1SOzY3GgHTXYBaAhHQKE/s0oBq9J1fZQoaAZHQHEc2bG3nZFoB02iAWgIR0ChQd225QP7dX2UKGgGR0BxROBas6q9aAdNLwFoCEdAoUJ974SHunV9lChoBkdAdB4wVTJhfGgHTR8BaAhHQKFDP63y7PJ1fZQoaAZHQG86AKneiztoB013AWgIR0ChRF89nscAdX2UKGgGR0BuDdvjwQUYaAdNKQFoCEdAoUSoPVd5ZHV9lChoBkdAc0/w84gieWgHTT4BaAhHQKFFA8mrsB11fZQoaAZHQHHEQfMfRu1oB01+AWgIR0ChRZs10knkdX2UKGgGR0BtO0+qzZ6EaAdNsQFoCEdAoUXQ7JW/8HV9lChoBkdAcCeFcpsoD2gHTWgBaAhHQKFF6dRR/Ex1fZQoaAZHQG8kWJJoTPBoB00+AmgIR0ChRrc4gieNdX2UKGgGR0BxM5Yoy9EkaAdNkQFoCEdAoUbQ065oXnV9lChoBkdAcTJSWJJoTWgHTVgDaAhHQKFHT60pmVZ1fZQoaAZHQHFRSEDhcZ9oB0vwaAhHQKFHxPX05EN1fZQoaAZHQHDWOruIAOtoB00LA2gIR0ChR/TpxFRYdX2UKGgGR0Bt2sxoIv8JaAdNOQFoCEdAoUhOkvboKXV9lChoBkdAcuycABDG+GgHTaUBaAhHQKFJg2606YF1fZQoaAZHQHKQHA/LTx5oB01AAWgIR0ChSgRqO939dX2UKGgGR0Buojn/1g6VaAdNBgFoCEdAoUoS3/givHV9lChoBkdAczz5AQg9vGgHTZgCaAhHQKFKRaRISUV1fZQoaAZHQG9JGXokiUxoB01xAWgIR0ChS2TjWCmNdX2UKGgGR0Bw6TgzguRLaAdL9WgIR0ChS3bwSamXdX2UKGgGR0BvV+yzHCGfaAdNHQFoCEdAoUuNyYG+snV9lChoBkdAcuQiX6ZYxWgHTU8DaAhHQKFM6ZdfLLZ1fZQoaAZHQHGmgEZBLPFoB01mAWgIR0ChTQzasZHedWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 460,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.9999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f45438cbf4833802930af8daee68d20283cbd2bc57bf281b0fb824b0fdf5118
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2c55d5741afb0c816e0fcf87941d27e09d35cbb964c09f20ec2890dd682a690
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (170 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.3524446999999, "std_reward": 16.064902792626555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-30T19:12:23.225956"}