{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78887d08ef00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693420310266897102, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1K+j2u/bQ/gyoPP2lwfb6+TBA+sS6jPgAAAAAAAAAATbw9Pa4rlLpOJxg4EVMSM0CYETuVKTC3AACAPwAAgD8AAFm57HaUu8I0BDsHuJU8a3L4vFO0fj0AAIA/AACAP2ZU3jyPXg+6Dj0KtrUuhbEP41475aUcNQAAgD8AAIA/moWpOxTMm7q18Dc61LPGPGk2lrsm1Kk9AACAPwAAgD+9SHy+q8w9P7380D0KuMS+InIpvphmaz0AAAAAAAAAADNrbbz2wF26isWCt3VMAbOlXgE7A22WNgAAgD8AAIA/GjROPVIIwLnJYgO8fGO9tnEPATwemzI2AACAPwAAgD9mu529i2/BPyRFDb9ZZTw+B4YXvTP5VL4AAAAAAAAAAGZO5TyFGcW7UyLWvD1GHD3m8Ck9dYYAvgAAgD8AAIA/zap7PVwrOLrCkAi4R9NOs5utizv/hB43AACAPwAAgD+ahCO94WyNuuK3QzoLrTI12YZKuuBTY7kAAIA/AACAP83cNz1i5Bs+KLIvvbNWkb6SN1k8UeOovAAAAAAAAAAA5oGBPhNdHz/O6ae+uUbwvo3k1T2+Ji++AAAAAAAAAACau4E8FDSdukf1gLVRuKGvlqcgOclMuTQAAIA/AACAP03H/z3M0sw+wA4CvnArrb5ty9E9fQwlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBPcLa24NKMAWyUTYcBjAF0lEdAoPAwm9g4O3V9lChoBkdAcUlizcAR02gHTTQBaAhHQKDwh5C4SYh1fZQoaAZHQHJbn8XN1QtoB01FAWgIR0Cg8TkUTL4fdX2UKGgGR0By5vA0sOG1aAdNIQFoCEdAoPFCk0rK/3V9lChoBkdAb5TBBRhttWgHTcEBaAhHQKDx8AuIyj51fZQoaAZHQHKoE87p3X9oB03dAWgIR0Cg8sXr+o9+dX2UKGgGR0BxYHXUYsNEaAdL9mgIR0Cg85lfReC1dX2UKGgGR0ByFwENe+mFaAdNPgFoCEdAoPOoLux8lXV9lChoBkdAc13UW2w3YWgHTegBaAhHQKD0NJxvNvB1fZQoaAZHQHIBhcJMQEpoB00GAWgIR0Cg9N6HKwIMdX2UKGgGR0BwafEUCaJAaAdNVQFoCEdAoPUKpDNQj3V9lChoBkdAcplk3CKrJmgHTSUBaAhHQKD1HuNxVAB1fZQoaAZHQHBKUUCaJANoB01SAWgIR0Cg9or+YMOPdX2UKGgGR0ByDxhjOLR8aAdNKgFoCEdAoPbING3F1nV9lChoBkdAcQG2zOX3QGgHTbwCaAhHQKD2zjBEa2p1fZQoaAZHQHCCp8rqdH5oB00RAWgIR0ChJz1lPJq7dX2UKGgGR0Bza8THsC1aaAdNbAFoCEdAoSdDiqABk3V9lChoBkdAcLsVPepGWmgHS/RoCEdAoSdMdq+JxnV9lChoBkdAcrYPkaMrE2gHTZQBaAhHQKEnT1p0wJx1fZQoaAZHQHHs8psoDxNoB0v6aAhHQKEoAwYcebN1fZQoaAZHQHAhVwYLsrxoB02xAmgIR0ChKJBq0tyxdX2UKGgGR0BwfyugYgq3aAdN3QJoCEdAoSmknRb8nHV9lChoBkdAczmaBI4EOmgHTUcCaAhHQKEp+zDXOGF1fZQoaAZHQHDDaaLGaQVoB00NAWgIR0ChKmuw5eZ5dX2UKGgGR0ByFq3fAKv3aAdNzQFoCEdAoSrXu9eyA3V9lChoBkdAcKpaBZpztGgHTZYBaAhHQKErKxs2vSt1fZQoaAZHQGclcma6ST1oB03oA2gIR0ChKz9QGfPHdX2UKGgGR0BuQlFH8TBZaAdL8WgIR0ChK7sTN+spdX2UKGgGR0BzEFsWO6uoaAdL/GgIR0ChK+ZjQRf4dX2UKGgGR0BvuSB9Tgl4aAdNDgFoCEdAoSw7LIPsiXV9lChoBkdActAgnc+JQGgHTRoBaAhHQKEsbLJSzgN1fZQoaAZHQHPQf8EV32VoB02oAWgIR0ChLNMPz4DcdX2UKGgGR0BxKOnUDuBuaAdNHAFoCEdAoS0V/z8P4HV9lChoBkdActHBQvYe1mgHTUgCaAhHQKEuKKrq+rV1fZQoaAZHQHF0haxHG0hoB01FAWgIR0ChLkg7xNItdX2UKGgGR0Bv7BAD7qIKaAdL+mgIR0ChLqBDPWxydX2UKGgGR0BxE2Ebo8p1aAdNIQFoCEdAoS7lF6RhdHV9lChoBkdAcnR5VfeDWmgHS+hoCEdAoTBAIBzV+nV9lChoBkdAczT4qwyIpGgHTR8BaAhHQKEwtpUPxx11fZQoaAZHQHG4j8LrontoB0v4aAhHQKEwzAoG6f91fZQoaAZHQHDwpv5xiodoB01QAWgIR0ChMPwd8zAOdX2UKGgGR0BzDPeWOZLJaAdNlgJoCEdAoTFcBU70WnV9lChoBkdAcHmDNQj2SWgHTW8BaAhHQKExpkc0cfh1fZQoaAZHQHCvF8G9pRJoB01dAWgIR0ChMga2v0ROdX2UKGgGR0Bxo6e2/i5vaAdL5WgIR0ChMyujZcs2dX2UKGgGR0ByHPGsFMZhaAdNYgFoCEdAoTMsQ7LdN3V9lChoBkdAcBFhN/OMVGgHTVUBaAhHQKEzObtqpLp1fZQoaAZHQGSggtOEdvNoB03oA2gIR0ChM32AoXsPdX2UKGgGR0BzCJZjhDPXaAdNKwJoCEdAoTOBpQDV6XV9lChoBkdAcVmFs54nnmgHTWYBaAhHQKE1vWGyon91fZQoaAZHQHHCYoy9EkVoB02RAWgIR0ChNhoXTEzgdX2UKGgGR0Bxflwgkka/aAdNGQFoCEdAoTat5le4TnV9lChoBkdAcRNVN5+pfmgHTYsCaAhHQKE3W3XI2fl1fZQoaAZHQHCey8e0XxhoB00bAWgIR0ChN90mD15CdX2UKGgGR0Bx/ZV+7UXpaAdNLQFoCEdAoTflxyXD33V9lChoBkdAcoXSZSeiBWgHTdIBaAhHQKE36ivgWJt1fZQoaAZHQHL3NCRfWtloB015AWgIR0ChOFi7TUiIdX2UKGgGR0BwGykcjqwAaAdNLwFoCEdAoTjh4ptrK3V9lChoBkdAbvwTibUgCGgHS99oCEdAoTj0+aBqbnV9lChoBkdAcQICROk+HWgHTQMBaAhHQKE5UW43FUB1fZQoaAZHQHPSsCDEm6ZoB0v9aAhHQKE5l9sJpnJ1fZQoaAZHQHIr8vduYQdoB00SAWgIR0ChOaTi0fHQdX2UKGgGR0BwthA/s3Q2aAdNEQFoCEdAoTmuqJdjXnV9lChoBkdAcLR0KZ2IPGgHTe4BaAhHQKE7v6E8JUp1fZQoaAZHQHM5GNrCWNZoB00UAWgIR0ChPP5OzposdX2UKGgGR0BxqpLuhK15aAdL6GgIR0ChPZ2y1NQCdX2UKGgGR0BwYxo11nuiaAdNAgFoCEdAoT3VtEXtSnV9lChoBkdAcnvzGxUvPGgHS+BoCEdAoT4F5KODJ3V9lChoBkdAcQRa6STyKGgHTR0BaAhHQKE+gaUiY9h1fZQoaAZHQHJF6l+EytVoB0veaAhHQKE+x98Z1mt1fZQoaAZHQHGEusPrfLtoB00pAWgIR0ChPtQevIOpdX2UKGgGR0Byqti4J/oaaAdNfwJoCEdAoT71jCpFTnV9lChoBkdAcUKHMUypJmgHTQcBaAhHQKE/fER8MNN1fZQoaAZHQHFGP1xsEaFoB00aAWgIR0ChP43KbKA8dX2UKGgGR0ByiDa0x/NJaAdNrgFoCEdAoT+SxRl6JXV9lChoBkdAcJR1SOzY3GgHTXYBaAhHQKE/s0oBq9J1fZQoaAZHQHEc2bG3nZFoB02iAWgIR0ChQd225QP7dX2UKGgGR0BxROBas6q9aAdNLwFoCEdAoUJ974SHunV9lChoBkdAdB4wVTJhfGgHTR8BaAhHQKFDP63y7PJ1fZQoaAZHQG86AKneiztoB013AWgIR0ChRF89nscAdX2UKGgGR0BuDdvjwQUYaAdNKQFoCEdAoUSoPVd5ZHV9lChoBkdAc0/w84gieWgHTT4BaAhHQKFFA8mrsB11fZQoaAZHQHHEQfMfRu1oB01+AWgIR0ChRZs10knkdX2UKGgGR0BtO0+qzZ6EaAdNsQFoCEdAoUXQ7JW/8HV9lChoBkdAcCeFcpsoD2gHTWgBaAhHQKFF6dRR/Ex1fZQoaAZHQG8kWJJoTPBoB00+AmgIR0ChRrc4gieNdX2UKGgGR0BxM5Yoy9EkaAdNkQFoCEdAoUbQ065oXnV9lChoBkdAcTJSWJJoTWgHTVgDaAhHQKFHT60pmVZ1fZQoaAZHQHFRSEDhcZ9oB0vwaAhHQKFHxPX05EN1fZQoaAZHQHDWOruIAOtoB00LA2gIR0ChR/TpxFRYdX2UKGgGR0Bt2sxoIv8JaAdNOQFoCEdAoUhOkvboKXV9lChoBkdAcuycABDG+GgHTaUBaAhHQKFJg2606YF1fZQoaAZHQHKQHA/LTx5oB01AAWgIR0ChSgRqO939dX2UKGgGR0Buojn/1g6VaAdNBgFoCEdAoUoS3/givHV9lChoBkdAczz5AQg9vGgHTZgCaAhHQKFKRaRISUV1fZQoaAZHQG9JGXokiUxoB01xAWgIR0ChS2TjWCmNdX2UKGgGR0Bw6TgzguRLaAdL9WgIR0ChS3bwSamXdX2UKGgGR0BvV+yzHCGfaAdNHQFoCEdAoUuNyYG+snV9lChoBkdAcuQiX6ZYxWgHTU8DaAhHQKFM6ZdfLLZ1fZQoaAZHQHGmgEZBLPFoB01mAWgIR0ChTQzasZHedWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}