|
import argparse
|
|
import os
|
|
import random
|
|
import time
|
|
from distutils.util import strtobool
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from stable_baselines3.common.atari_wrappers import (
|
|
ClipRewardEnv,
|
|
EpisodicLifeEnv,
|
|
FireResetEnv,
|
|
MaxAndSkipEnv,
|
|
NoopResetEnv
|
|
)
|
|
from stable_baselines3.common.buffers import ReplayBuffer
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
|
|
help="the name of this experiment")
|
|
parser.add_argument("--seed", type=int, default=1,
|
|
help="seed of the experiment")
|
|
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
|
help="if toggled, `torch.backends.cudnn.deterministic=False`")
|
|
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
|
help="if toggled, cuda will be enabled by default")
|
|
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
|
help="if toggled, this experiment will be tracked with Weights and Biases")
|
|
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
|
|
help="the wandb's project name")
|
|
parser.add_argument("--wandb-entity", type=str, default=None,
|
|
help="the entity (team) of wandb's project")
|
|
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
|
help="whether to capture videos of the agent performances (check out `videos` folder)")
|
|
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
|
help="whether to save model into the `runs/{run_name}` folder")
|
|
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
|
help="whether to upload the saved model to huggingface")
|
|
parser.add_argument("--hf-entity", type=str, default="",
|
|
help="the user or org name of the model repository from the Hugging Face Hub")
|
|
|
|
|
|
parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4",
|
|
help="the id of the environment")
|
|
parser.add_argument("--total-timesteps", type=int, default=100000,
|
|
help="total timesteps of the experiments")
|
|
parser.add_argument("--learning-rate", type=float, default=1e-4,
|
|
help="the learning rate of the optimizer")
|
|
parser.add_argument("--num-envs", type=int, default=1,
|
|
help="the number of parallel game environments")
|
|
parser.add_argument("--buffer-size", type=int, default=1000000,
|
|
help="the replay memory buffer size")
|
|
parser.add_argument("--gamma", type=float, default=0.99,
|
|
help="the discount factor gamma")
|
|
parser.add_argument("--tau", type=float, default=1.,
|
|
help="the target network update rate")
|
|
parser.add_argument("--target-network-frequency", type=int, default=1000,
|
|
help="the timesteps it takes to update the target network")
|
|
parser.add_argument("--batch-size", type=int, default=32,
|
|
help="the batch size of sample from the reply memory")
|
|
parser.add_argument("--start-e", type=float, default=1,
|
|
help="the starting epsilon for exploration")
|
|
parser.add_argument("--end-e", type=float, default=0.01,
|
|
help="the ending epsilon for exploration")
|
|
parser.add_argument("--exploration-fraction", type=float, default=0.10,
|
|
help="the fraction of `total-timesteps` it takes from start-e to go end-e")
|
|
parser.add_argument("--learning-starts", type=int, default=80000,
|
|
help="timestep to start learning")
|
|
parser.add_argument("--train-frequency", type=int, default=4,
|
|
help="the frequency of training")
|
|
args = parser.parse_args()
|
|
|
|
assert args.num_envs == 1, "vectorized envs are not supported at the moment"
|
|
|
|
return args
|
|
|
|
|
|
def make_env(env_id, seed, idx, capture_video, run_name):
|
|
def thunk():
|
|
if capture_video and idx == 0:
|
|
env = gym.make(env_id, render_mode="rgb_array")
|
|
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
|
|
else:
|
|
env = gym.make(env_id)
|
|
|
|
env = gym.wrappers.RecordEpisodeStatistics(env)
|
|
env = NoopResetEnv(env, noop_max=30)
|
|
env = MaxAndSkipEnv(env, skip=4)
|
|
env = EpisodicLifeEnv(env)
|
|
|
|
if "FIRE" in env.unwrapped.get_action_meanings():
|
|
env = FireResetEnv(env)
|
|
|
|
env = ClipRewardEnv(env)
|
|
env = gym.wrappers.ResizeObservation(env, (84, 84))
|
|
env = gym.wrappers.GrayScaleObservation(env)
|
|
env = gym.wrappers.FrameStack(env, 4)
|
|
env.action_space.seed(seed)
|
|
|
|
return env
|
|
|
|
return thunk
|
|
|
|
|
|
class QNetwork(nn.Module):
|
|
def __init__(self, env):
|
|
super().__init__()
|
|
self.network = nn.Sequential(
|
|
nn.Conv2d(4, 32, 8, stride=4),
|
|
nn.ReLU(),
|
|
nn.Conv2d(32, 64, 4, stride=2),
|
|
nn.ReLU(),
|
|
nn.Conv2d(64, 64, 3, stride=1),
|
|
nn.ReLU(),
|
|
nn.Flatten(),
|
|
nn.Linear(3136, 512),
|
|
nn.ReLU(),
|
|
nn.Linear(512, env.single_action_space.n),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.network(x / 255.0)
|
|
|
|
|
|
def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
|
|
slope = (end_e - start_e) / duration
|
|
return max(slope * t + start_e, end_e)
|
|
|
|
if __name__ == "__main__":
|
|
import stable_baselines3 as sb3
|
|
from huggingface_hub import login
|
|
from dotenv import load_dotenv, find_dotenv
|
|
load_dotenv(find_dotenv())
|
|
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
login(HF_TOKEN)
|
|
|
|
|
|
if sb3.__version__ < "2.0":
|
|
raise ValueError(
|
|
"""On going migration: run the following command to install new dependencies
|
|
pip install "stable_baselines3==2.0.0a1" "gymnasium[atari,accept-rom-license]==0.28.1" "ale-py==0.8.1"
|
|
"""
|
|
)
|
|
|
|
args = parse_args()
|
|
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
|
|
if args.track:
|
|
import wandb
|
|
|
|
wandb.init(
|
|
project=args.wandb_project_name,
|
|
entity=args.wandb_entity,
|
|
sync_tensorboard=True,
|
|
config=vars(args),
|
|
name=run_name,
|
|
monitor_gym=True,
|
|
save_code=True
|
|
)
|
|
|
|
writer = SummaryWriter(f"runs/{run_name}")
|
|
writer.add_text(
|
|
"hyperparameters",
|
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
|
)
|
|
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
torch.backends.cudnn.deterministic = args.torch_deterministic
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
|
|
|
|
envs = gym.vector.SyncVectorEnv(
|
|
[make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
|
|
)
|
|
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
|
|
|
|
q_network = QNetwork(envs).to(device)
|
|
optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
|
|
target_network = QNetwork(envs).to(device)
|
|
target_network.load_state_dict(q_network.state_dict())
|
|
|
|
rb = ReplayBuffer(
|
|
args.buffer_size,
|
|
envs.single_observation_space,
|
|
envs.single_action_space,
|
|
device,
|
|
optimize_memory_usage=True,
|
|
handle_timeout_termination=False
|
|
)
|
|
start_time = time.time()
|
|
|
|
obs, _ = envs.reset(seed=args.seed)
|
|
for global_step in range(args.total_timesteps):
|
|
epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
|
|
if random.random() < epsilon:
|
|
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
|
|
else:
|
|
q_values = q_network(torch.Tensor(obs).to(device))
|
|
actions = torch.argmax(q_values, dim=1).cpu().numpy()
|
|
|
|
next_obs, rewards, terminated, truncated, infos = envs.step(actions)
|
|
|
|
if "final_info" in infos:
|
|
for info in infos["final_info"]:
|
|
if "episode" not in info:
|
|
continue
|
|
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
|
|
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
|
|
writer.add_scalar("charts/episode_length", info["episode"]["l"], global_step)
|
|
writer.add_scalar("charts/epsilon", epsilon, global_step)
|
|
|
|
real_next_obs = next_obs.copy()
|
|
for idx, d in enumerate(truncated):
|
|
if d:
|
|
real_next_obs[idx] = infos["final_observation"][idx]
|
|
rb.add(obs, real_next_obs, actions, rewards, terminated, infos)
|
|
|
|
obs = next_obs
|
|
|
|
if global_step > args.learning_starts:
|
|
if global_step % args.train_frequency == 0:
|
|
data = rb.sample(args.batch_size)
|
|
with torch.no_grad():
|
|
target_max, _ = target_network(data.next_observations).max(dim=1)
|
|
td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
|
|
old_val = q_network(data.observations).gather(1, data.actions).squeeze()
|
|
loss = F.mse_loss(td_target, old_val)
|
|
|
|
if global_step % 100 == 0:
|
|
writer.add_scalar("losses/td_loss", loss, global_step)
|
|
writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
|
|
print("SPS:", int(global_step / (time.time() - start_time)))
|
|
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
if global_step % args.target_network_frequency == 0:
|
|
for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()):
|
|
target_network_param.data.copy_(
|
|
args.tau * q_network_param.data + (1.0 - args.tau) * target_network_param.data
|
|
)
|
|
|
|
if args.save_model:
|
|
model_path = f"runs/{run_name}/{args.exp_name}.pth"
|
|
torch.save(q_network.state_dict(), model_path)
|
|
print(f"model saved to {model_path}")
|
|
|
|
from dqn_eval import evaluate
|
|
|
|
episodic_returns = evaluate(
|
|
model_path,
|
|
make_env,
|
|
args.env_id,
|
|
eval_episode=10,
|
|
run_name=f"{run_name}-eval",
|
|
Model=QNetwork,
|
|
device=device,
|
|
epsilon=0.05,
|
|
)
|
|
|
|
for idx, episodic_return in enumerate(episodic_returns):
|
|
writer.add_scalar("eval/episodic_return", episodic_return, idx)
|
|
|
|
if args.upload_model:
|
|
from huggingface import push_to_hub
|
|
|
|
repo_name = f"{args.exp_name}"
|
|
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
|
|
push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
|
|
|
|
envs.close()
|
|
writer.close()
|
|
|
|
|