--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: my_awesome_mind_model results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.07964601769911504 --- # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6599 - Accuracy: 0.0796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6397 | 0.0531 | | No log | 1.9333 | 7 | 2.6456 | 0.0796 | | 2.6345 | 2.8 | 10 | 2.6545 | 0.0531 | | 2.6345 | 3.9333 | 14 | 2.6604 | 0.0531 | | 2.6345 | 4.8 | 17 | 2.6609 | 0.0531 | | 2.62 | 5.9333 | 21 | 2.6603 | 0.0796 | | 2.62 | 6.8 | 24 | 2.6610 | 0.0796 | | 2.62 | 7.9333 | 28 | 2.6598 | 0.0796 | | 2.6132 | 8.5333 | 30 | 2.6599 | 0.0796 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1