--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: audio_emotion_classification results: [] --- # audio_emotion_classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0104 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---:| | No log | 1.0 | 240 | 0.1119 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 480 | 0.0285 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4242 | 3.0 | 720 | 0.0159 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4242 | 4.0 | 960 | 0.0116 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0253 | 5.0 | 1200 | 0.0104 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Tokenizers 0.20.3