--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-clinical-plncmm-large-21 results: [] --- # bert-finetuned-ner-clinical-plncmm-large-21 This model is a fine-tuned version of [plncmm/beto-clinical-wl-es](https://huggingface.co/plncmm/beto-clinical-wl-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2547 - Precision: 0.7735 - Recall: 0.8321 - F1: 0.8017 - Accuracy: 0.9358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.236 | 1.0 | 1714 | 0.2390 | 0.7219 | 0.8106 | 0.7637 | 0.9257 | | 0.156 | 2.0 | 3428 | 0.2498 | 0.7413 | 0.8271 | 0.7818 | 0.9306 | | 0.096 | 3.0 | 5142 | 0.2547 | 0.7735 | 0.8321 | 0.8017 | 0.9358 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3