--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-clinical-plncmm-large-22 results: [] --- # bert-finetuned-ner-clinical-plncmm-large-22 This model is a fine-tuned version of [plncmm/beto-clinical-wl-es](https://huggingface.co/plncmm/beto-clinical-wl-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2380 - Precision: 0.7554 - Recall: 0.8271 - F1: 0.7896 - Accuracy: 0.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5983 | 1.0 | 572 | 0.2405 | 0.7044 | 0.7964 | 0.7476 | 0.9227 | | 0.1979 | 2.0 | 1144 | 0.2421 | 0.7296 | 0.8189 | 0.7717 | 0.9275 | | 0.1406 | 3.0 | 1716 | 0.2380 | 0.7554 | 0.8271 | 0.7896 | 0.9320 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3