File size: 1,798 Bytes
a0ee202 5c11756 a0ee202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: plncmm/beto-clinical-wl-es
model-index:
- name: bert-finetuned-ner-clinical-plncmm-large-25
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-clinical-plncmm-large-25
This model is a fine-tuned version of [plncmm/beto-clinical-wl-es](https://huggingface.co/plncmm/beto-clinical-wl-es) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2487
- Precision: 0.7372
- Recall: 0.8035
- F1: 0.7689
- Accuracy: 0.9270
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 18
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 446 | 0.2607 | 0.6701 | 0.7772 | 0.7197 | 0.9113 |
| 0.6128 | 2.0 | 892 | 0.2298 | 0.7266 | 0.7964 | 0.7599 | 0.9254 |
| 0.1927 | 3.0 | 1338 | 0.2487 | 0.7372 | 0.8035 | 0.7689 | 0.9270 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|