File size: 3,707 Bytes
c685cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
model:
sr: 44100
n_fft: 2048
bandsplits:
- - 1000
- 50
- - 2000
- 100
- - 4000
- 250
- - 8000
- 500
- - 16000
- 1000
bottleneck_layer: rnn
t_timesteps: 263
fc_dim: 128
rnn_dim: 256
rnn_type: LSTM
bidirectional: true
num_layers: 10
mlp_dim: 512
return_mask: false
complex_as_channel: true
is_mono: false
train_dataset:
file_dir: /home/afteraugustmusician/Music-Demixing-with-Band-Split-RNN/datasets/Drums
txt_dir: files/
txt_path: null
target: drums
is_training: true
is_mono: false
sr: 44100
preload_dataset: false
silent_prob: 0.1
mix_prob: 0.25
mix_tgt_too: false
test_dataset:
in_fp: /home/afteraugustmusician/Music-Demixing-with-Band-Split-RNN/datasets/Drums
target: drums
is_mono: false
sr: 44100
win_size: 3
hop_size: 0.5
batch_size: 4
window: null
sad:
sr: 44100
window_size_in_sec: 6
overlap_ratio: 0.5
n_chunks_per_segment: 10
eps: 1.0e-05
gamma: 0.001
threshold_max_quantile: 0.15
threshold_segment: 0.5
augmentations:
randomcrop:
_target_: data.augmentations.RandomCrop
p: 1
chunk_size_sec: 3
sr: 44100
window_stft: 2048
hop_stft: 512
gainscale:
_target_: data.augmentations.GainScale
p: 0.5
min_db: -10.0
max_db: 10.0
featurizer:
direct_transform:
_target_: torchaudio.transforms.Spectrogram
n_fft: 2048
win_length: 2048
hop_length: 512
power: null
inverse_transform:
_target_: torchaudio.transforms.InverseSpectrogram
n_fft: 2048
win_length: 2048
hop_length: 512
callbacks:
lr_monitor:
_target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: epoch
model_ckpt:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: train/loss
mode: min
save_top_k: 5
dirpath: /home/afteraugustmusician/Music-Demixing-with-Band-Split-RNN/src/logs/bandsplitrnn/2023-05-08_15-35/weights
filename: epoch{epoch:02d}-train_loss{train/loss:.2f}
auto_insert_metric_name: false
model_ckpt_usdr:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: train/usdr
mode: max
save_top_k: 5
dirpath: /home/afteraugustmusician/Music-Demixing-with-Band-Split-RNN/src/logs/bandsplitrnn/2023-05-08_15-35/weights
filename: epoch{epoch:02d}-train_usdr{train/usdr:.2f}
auto_insert_metric_name: false
ema:
_target_: utils.callbacks.EMA
decay: 0.9999
validate_original_weights: false
every_n_steps: 1
logger:
tensorboard:
_target_: pytorch_lightning.loggers.TensorBoardLogger
save_dir: /home/afteraugustmusician/Music-Demixing-with-Band-Split-RNN/src/logs/bandsplitrnn/2023-05-08_15-35/tb_logs
name: ''
version: ''
log_graph: false
default_hp_metric: false
prefix: ''
wandb:
_target_: pytorch_lightning.loggers.WandbLogger
project: MDX_BSRNN_23
name: drums
save_dir: wandb_logs
offline: false
id: null
log_model: false
prefix: ''
job_type: train
group: ''
tags: []
train_loader:
batch_size: 8
num_workers: 12
shuffle: true
drop_last: true
val_loader:
batch_size: 2
num_workers: 8
shuffle: false
drop_last: false
opt:
_target_: torch.optim.Adam
lr: 0.001
sch:
warmup_step: 10
alpha: 1
gamma: 0.9899494936611665
ckpt_path: logs/bandsplitrnn/2023-04-29_14-45/weights/drums-193-usdr-5.29.ckpt
trainer:
fast_dev_run: false
min_epochs: 100
max_epochs: 500
log_every_n_steps: 10
accelerator: auto
devices: auto
gradient_clip_val: 5
precision: 32
enable_progress_bar: true
benchmark: true
deterministic: false
experiment_dirname: bandsplitrnn
wandb_api_key: d5c4447e39b2b10b95f05f907d57845ded16bc13
|