nreimers commited on
Commit
db6ce33
·
1 Parent(s): c1a44ab
CECorrelationEvaluator_sts-dev_results.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ epoch,steps,Pearson_Correlation,Spearman_Correlation
2
+ 0,-1,0.8545983323224908,0.8468392535285587
3
+ 1,-1,0.8571942532186558,0.8520208839729133
4
+ 2,-1,0.8613338704883177,0.8538568557640089
5
+ 3,-1,0.8616480884450483,0.8550005160746958
6
+ 4,-1,0.8605050883898332,0.8543731967733662
7
+ 5,-1,0.8612005934368199,0.8541962412946662
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Cross-Encoder for Quora Duplicate Questions Detection
2
+ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
3
+
4
+ ## Training Data
5
+ This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
6
+
7
+
8
+ ## Usage and Performance
9
+
10
+ Pre-trained models can be used like this:
11
+ ```
12
+ from sentence_transformers import CrossEncoder
13
+ model = CrossEncoder('model_name')
14
+ scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
15
+ ```
16
+
17
+ The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
18
+
19
+ You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/TinyBERT_L-4-nli/",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 312,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1200,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 4,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "type_vocab_size": 2,
27
+ "vocab_size": 30522
28
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c81276416deab713ab841b7d4afa2484270d5d23d735d1baa27a7bc1501080e2
3
+ size 57436041
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/f96b11e14fec8f4be06121e7f6bbe07f82216bf7d75ad76fe3a81251e8895d69.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "output/TinyBERT_L-4-nli/", "do_basic_tokenize": true, "never_split": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff