nreimers
commited on
Commit
·
db6ce33
1
Parent(s):
c1a44ab
upload
Browse files- CECorrelationEvaluator_sts-dev_results.csv +7 -0
- README.md +19 -0
- config.json +28 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
CECorrelationEvaluator_sts-dev_results.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,Pearson_Correlation,Spearman_Correlation
|
2 |
+
0,-1,0.8545983323224908,0.8468392535285587
|
3 |
+
1,-1,0.8571942532186558,0.8520208839729133
|
4 |
+
2,-1,0.8613338704883177,0.8538568557640089
|
5 |
+
3,-1,0.8616480884450483,0.8550005160746958
|
6 |
+
4,-1,0.8605050883898332,0.8543731967733662
|
7 |
+
5,-1,0.8612005934368199,0.8541962412946662
|
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Cross-Encoder for Quora Duplicate Questions Detection
|
2 |
+
This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
|
3 |
+
|
4 |
+
## Training Data
|
5 |
+
This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
|
6 |
+
|
7 |
+
|
8 |
+
## Usage and Performance
|
9 |
+
|
10 |
+
Pre-trained models can be used like this:
|
11 |
+
```
|
12 |
+
from sentence_transformers import CrossEncoder
|
13 |
+
model = CrossEncoder('model_name')
|
14 |
+
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
|
15 |
+
```
|
16 |
+
|
17 |
+
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
|
18 |
+
|
19 |
+
You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/TinyBERT_L-4-nli/",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 312,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1200,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 4,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"type_vocab_size": 2,
|
27 |
+
"vocab_size": 30522
|
28 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c81276416deab713ab841b7d4afa2484270d5d23d735d1baa27a7bc1501080e2
|
3 |
+
size 57436041
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/f96b11e14fec8f4be06121e7f6bbe07f82216bf7d75ad76fe3a81251e8895d69.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "output/TinyBERT_L-4-nli/", "do_basic_tokenize": true, "never_split": null}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|