File size: 14,337 Bytes
239bfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
accbd46
 
239bfed
 
 
accbd46
239bfed
 
 
 
 
 
 
 
accbd46
239bfed
 
 
 
 
 
 
 
 
accbd46
239bfed
 
accbd46
239bfed
 
 
 
 
accbd46
239bfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb94655e310>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb94655e3a0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb94655e430>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb94655e4c0>",
        "_build": "<function ActorCriticPolicy._build at 0x7fb94655e550>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fb94655e5e0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb94655e670>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fb94655e700>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb94655e790>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb94655e820>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb94655e8b0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fb94655f800>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 8,
    "num_timesteps": 10010624,
    "_total_timesteps": 10000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1657398593.810292,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS9jcm91bWVnb3VzL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvY3JvdW1lZ291cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAM1iTbx6Ork/bqeYvodCuT4g7wk7OqBZvQAAAAAAAAAA8xGWvS4HqTtbuMg+RhbIvoQemj31iGA+AAAAAAAAgD9mX8S8eza4ukTVPLfL9jmyuQG7uQ4+WDYAAIA/AACAP818/zv5brM/zzLGPpRVXL4b69i71T4ovQAAAAAAAAAAzRzsPZsZiD/Woa0+jbgovzY2lz7TPKg+AAAAAAAAAABmlhs8j742usbmDTZc4wAxwsxAO3wqLbUAAIA/AACAP838qTxsUfq7O0ytvTM/xTxjfkc9aYujvQAAgD8AAIA/AMlKPcNtXroWTK06ctJxNXYFDjsIaW40AACAPwAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.0010623999999999079,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrvNvlz3Ic0CUhpRSlIwBbJRLpowBdJRHQNBMsERWcSZ1fZQoaAZoCWgPQwhrYoGvqJJzQJSGlFKUaBVLwmgWR0DQTLDtRekYdX2UKGgGaAloD0MI+weRDDmCc0CUhpRSlGgVS7hoFkdA0E1WhZQpF3V9lChoBmgJaA9DCIRjlj2J/nBAlIaUUpRoFUusaBZHQNBNVtpyp711fZQoaAZoCWgPQwhj8gaYefJvQJSGlFKUaBVLmWgWR0DQTVz62v0RdX2UKGgGaAloD0MIFLGIYQd/c0CUhpRSlGgVS79oFkdA0E1dsIE8rHV9lChoBmgJaA9DCNbkKaupTHRAlIaUUpRoFUvQaBZHQNBNYAIUrTZ1fZQoaAZoCWgPQwi/R/31inlzQJSGlFKUaBVLtWgWR0DQTWCFUQ05dX2UKGgGaAloD0MI5BOy8zadUkCUhpRSlGgVS3VoFkdA0E1gGax5cHV9lChoBmgJaA9DCC1A22oW2nFAlIaUUpRoFUuraBZHQNBNZZYLb6B1fZQoaAZoCWgPQwhvZYnOMv1AQJSGlFKUaBVLWGgWR0DQTWrKPn0TdX2UKGgGaAloD0MIWTMyyN0CckCUhpRSlGgVS6toFkdA0E1rGgSOBHV9lChoBmgJaA9DCKCH2jYMHXJAlIaUUpRoFUu1aBZHQNBNbAevIOp1fZQoaAZoCWgPQwj1LXO67AFzQJSGlFKUaBVLjWgWR0DQTXCe+VTrdX2UKGgGaAloD0MIK76h8NlWckCUhpRSlGgVS7BoFkdA0E1x0K7ZnXV9lChoBmgJaA9DCPiqlQl/hXFAlIaUUpRoFUutaBZHQNBNch/y5I91fZQoaAZoCWgPQwjcm98wUUJxQJSGlFKUaBVLpWgWR0DQTXNTUAktdX2UKGgGaAloD0MIkKFjBxU4ckCUhpRSlGgVS7loFkdA0E17M1TBInV9lChoBmgJaA9DCOvE5XgFJkZAlIaUUpRoFUtSaBZHQNBNfLVOKwZ1fZQoaAZoCWgPQwjGMCdo0/RzQJSGlFKUaBVLsGgWR0DQTX8vlEJCdX2UKGgGaAloD0MI24r9ZfcCcUCUhpRSlGgVS6toFkdA0E1+1v2oN3V9lChoBmgJaA9DCJ9x4UBI+XFAlIaUUpRoFUumaBZHQNBNfyYsunN1fZQoaAZoCWgPQwhg5jv4SSByQJSGlFKUaBVLn2gWR0DQTYN2FFlTdX2UKGgGaAloD0MIbCQJwtX8cECUhpRSlGgVS6loFkdA0E2EW1MM7XV9lChoBmgJaA9DCLN4sTBEKHNAlIaUUpRoFUuxaBZHQNBNhDDsMRZ1fZQoaAZoCWgPQwgMIHwo0VhwQJSGlFKUaBVLjmgWR0DQTY4ophF3dX2UKGgGaAloD0MIyjMvh531c0CUhpRSlGgVS69oFkdA0E2OM9r433V9lChoBmgJaA9DCLUYPEy7M3NAlIaUUpRoFUumaBZHQNBNjqI3zc11fZQoaAZoCWgPQwjgK7r12m9wQJSGlFKUaBVLumgWR0DQTZKt/4IsdX2UKGgGaAloD0MIQIo6c89IckCUhpRSlGgVS79oFkdA0E2TnscABHV9lChoBmgJaA9DCGiTwyeda3BAlIaUUpRoFUuXaBZHQNBNlMHSncd1fZQoaAZoCWgPQwhJopdRbE1yQJSGlFKUaBVLsWgWR0DQTZaPGQ0XdX2UKGgGaAloD0MIb59VZordc0CUhpRSlGgVS79oFkdA0E2YZzxPPHV9lChoBmgJaA9DCARVo1eDwnFAlIaUUpRoFUuTaBZHQNBNnaa1Cw91fZQoaAZoCWgPQwiwdD48yyJyQJSGlFKUaBVLnmgWR0DQTZ6EQGwBdX2UKGgGaAloD0MI7niT3+I1c0CUhpRSlGgVS6FoFkdA0E2e1Cw8n3V9lChoBmgJaA9DCE3YfjLGXG9AlIaUUpRoFUufaBZHQNBNo6jvd/J1fZQoaAZoCWgPQwhB2ClWzd5wQJSGlFKUaBVLtGgWR0DQTaUjX4CZdX2UKGgGaAloD0MIJSAm4YIackCUhpRSlGgVS6xoFkdA0E2mrXDm83V9lChoBmgJaA9DCI9yMJtAhHRAlIaUUpRoFUuyaBZHQNBNqcsDnvF1fZQoaAZoCWgPQwi/Q1Ggz5dzQJSGlFKUaBVLxGgWR0DQTa5IuoP1dX2UKGgGaAloD0MIdVWgFsO6cUCUhpRSlGgVS5FoFkdA0E2vMOPNmnV9lChoBmgJaA9DCJ2FPe0wqXFAlIaUUpRoFUuiaBZHQNBNsFuJk5J1fZQoaAZoCWgPQwg4ukp3F8FyQJSGlFKUaBVLrGgWR0DQTbKlFc6edX2UKGgGaAloD0MIbHak+g6xcUCUhpRSlGgVS6NoFkdA0E23FUyYX3V9lChoBmgJaA9DCHFV2XeFiHFAlIaUUpRoFUugaBZHQNBNuYgaFVV1fZQoaAZoCWgPQwhpNo/DIFxxQJSGlFKUaBVLt2gWR0DQTbqzu4PPdX2UKGgGaAloD0MIr0D0pAxmcUCUhpRSlGgVS6RoFkdA0E28epGWlnV9lChoBmgJaA9DCIuNeR1xw3FAlIaUUpRoFUuJaBZHQNBNvkE1VHZ1fZQoaAZoCWgPQwj/A6xVO79wQJSGlFKUaBVLrWgWR0DQTcHB7/n4dX2UKGgGaAloD0MIJR+7C5RBc0CUhpRSlGgVS7poFkdA0E3F7XQMQXV9lChoBmgJaA9DCFPQ7SXNtXFAlIaUUpRoFUuIaBZHQNBNye8PFvR1fZQoaAZoCWgPQwhK0cq9wCxzQJSGlFKUaBVLxGgWR0DQTcnoOhCddX2UKGgGaAloD0MISfdzCvLzckCUhpRSlGgVS75oFkdA0E3N1A7gbnV9lChoBmgJaA9DCI6xE17CBHNAlIaUUpRoFUu4aBZHQNBN0MvIwM91fZQoaAZoCWgPQwjxLhfxXa5wQJSGlFKUaBVLo2gWR0DQTdJjVhCudX2UKGgGaAloD0MIQZqxaPojdECUhpRSlGgVS8ZoFkdA0E3UPnB+F3V9lChoBmgJaA9DCP2FHjF6wHFAlIaUUpRoFUumaBZHQNBN1cNtqHp1fZQoaAZoCWgPQwhNEkvKnUtwQJSGlFKUaBVLkWgWR0DQTdnyCnP3dX2UKGgGaAloD0MI/TBCeLSLcUCUhpRSlGgVS45oFkdA0E3c8Empl3V9lChoBmgJaA9DCBE0ZhK1gnJAlIaUUpRoFUvNaBZHQNBN3PKEFnt1fZQoaAZoCWgPQwglCFdA4b1yQJSGlFKUaBVLtGgWR0DQTd2DtgKGdX2UKGgGaAloD0MIJ02DojnGcECUhpRSlGgVS51oFkdA0E3g+xGDtnV9lChoBmgJaA9DCLPTD+oivnBAlIaUUpRoFUuxaBZHQNBN5MKb8WN1fZQoaAZoCWgPQwglzoqoiRBzQJSGlFKUaBVLsGgWR0DQTeal2vB8dX2UKGgGaAloD0MIVBnG3WBAckCUhpRSlGgVS7hoFkdA0E3pPtUn5XV9lChoBmgJaA9DCCqtvyUAd3JAlIaUUpRoFUuWaBZHQNBN6facqe91fZQoaAZoCWgPQwip+wCkdh1xQJSGlFKUaBVLiWgWR0DQTevR/mT1dX2UKGgGaAloD0MIXvOqzqo0cECUhpRSlGgVS6xoFkdA0E3wt52Qn3V9lChoBmgJaA9DCCV32ERmqnNAlIaUUpRoFUvBaBZHQNBN8ptelbh1fZQoaAZoCWgPQwgZdELo4P1zQJSGlFKUaBVLsmgWR0DQTfZC/oJRdX2UKGgGaAloD0MIcM/zpw3UcUCUhpRSlGgVS6hoFkdA0E35XT3IuHV9lChoBmgJaA9DCEQ0uoPY8HJAlIaUUpRoFUuraBZHQNBN+6u4gA91fZQoaAZoCWgPQwg656c4zodzQJSGlFKUaBVLsGgWR0DQTf8E3bVSdX2UKGgGaAloD0MIZFkw8UdyckCUhpRSlGgVS7toFkdA0E4DTSsr/nV9lChoBmgJaA9DCPiov16hunJAlIaUUpRoFUvZaBZHQNBOBSimEXd1fZQoaAZoCWgPQwi95erHJqRyQJSGlFKUaBVLumgWR0DQTggyrPt2dX2UKGgGaAloD0MIXAAapYt/cUCUhpRSlGgVS8BoFkdA0E4KkGzKLnV9lChoBmgJaA9DCNRkxttKI3NAlIaUUpRoFUuraBZHQNBOCzLGJep1fZQoaAZoCWgPQwgXR+UmqkRzQJSGlFKUaBVLj2gWR0DQTgzcGkeqdX2UKGgGaAloD0MIEyujkc+scECUhpRSlGgVS6doFkdA0E4NWDYh+3V9lChoBmgJaA9DCM2xvKuernNAlIaUUpRoFUuuaBZHQNBOEtGViWp1fZQoaAZoCWgPQwgbEYyDy7dzQJSGlFKUaBVLq2gWR0DQThfCLuQZdX2UKGgGaAloD0MI5E7pYL3ZcUCUhpRSlGgVS71oFkdA0E4YQQL/j3V9lChoBmgJaA9DCBA//z340XFAlIaUUpRoFUucaBZHQNBOGNrftQd1fZQoaAZoCWgPQwhMbhRZKzVyQJSGlFKUaBVLoGgWR0DQThviaRZEdX2UKGgGaAloD0MIZvhPN5Cxc0CUhpRSlGgVS71oFkdA0E4eMCLde3V9lChoBmgJaA9DCHkgskhTX3JAlIaUUpRoFUu1aBZHQNBOH4raufV1fZQoaAZoCWgPQwjAIOnTahBzQJSGlFKUaBVLzWgWR0DQTiJgJC0GdX2UKGgGaAloD0MIYJSgvxDfckCUhpRSlGgVS7poFkdA0E4mQm/nGXV9lChoBmgJaA9DCKjixi1mO3BAlIaUUpRoFUugaBZHQNBOKIIF/x51fZQoaAZoCWgPQwgJGjOJOvpyQJSGlFKUaBVLs2gWR0DQTis/dIoWdX2UKGgGaAloD0MIOKPmq+R6ckCUhpRSlGgVS4VoFkdA0E4s6Ymb9nV9lChoBmgJaA9DCIMwt3t5XnJAlIaUUpRoFUu9aBZHQNBOLRr8BMl1fZQoaAZoCWgPQwhgkV8/xJpIQJSGlFKUaBVLXmgWR0DQTi1c4YJmdX2UKGgGaAloD0MIeev82+XLcUCUhpRSlGgVS6RoFkdA0E4tzUqhDnV9lChoBmgJaA9DCPmdJjOe7nNAlIaUUpRoFUuoaBZHQNBOMnTd+G51fZQoaAZoCWgPQwhC6Qsh5wRxQJSGlFKUaBVLnWgWR0DQTjsdbPhRdX2UKGgGaAloD0MIrtUe9kIrb0CUhpRSlGgVS55oFkdA0E499ETg23V9lChoBmgJaA9DCEEOSpipqnJAlIaUUpRoFUuMaBZHQNBOPgWznih1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 5624,
    "n_steps": 2048,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 128,
    "n_epochs": 8,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFgvaG9tZS9jcm91bWVnb3VzL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxYL2hvbWUvY3JvdW1lZ291cy9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}