croumegous
commited on
Commit
·
00d2fd0
1
Parent(s):
93d55c4
Initial commit
Browse files- .gitattributes +1 -0
- README.md +75 -0
- args.yml +83 -0
- config.yml +19 -0
- env_kwargs.yml +1 -0
- ppo-Swimmer-v3.zip +3 -0
- ppo-Swimmer-v3/_stable_baselines3_version +1 -0
- ppo-Swimmer-v3/data +103 -0
- ppo-Swimmer-v3/policy.optimizer.pth +3 -0
- ppo-Swimmer-v3/policy.pth +3 -0
- ppo-Swimmer-v3/pytorch_variables.pth +3 -0
- ppo-Swimmer-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Swimmer-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Swimmer-v3
|
16 |
+
type: Swimmer-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 334.43 +/- 2.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Swimmer-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **Swimmer-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Swimmer-v3 -orga croumegous -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env Swimmer-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Swimmer-v3 -orga croumegous -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env Swimmer-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env Swimmer-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env Swimmer-v3 -f logs/ -orga croumegous
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('gae_lambda', 0.98),
|
67 |
+
('gamma', 0.9999),
|
68 |
+
('learning_rate', 0.0006),
|
69 |
+
('n_envs', 4),
|
70 |
+
('n_steps', 1024),
|
71 |
+
('n_timesteps', 1000000.0),
|
72 |
+
('normalize', True),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
75 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Swimmer-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs/
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2355280636
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.98
|
6 |
+
- - gamma
|
7 |
+
- 0.9999
|
8 |
+
- - learning_rate
|
9 |
+
- 0.0006
|
10 |
+
- - n_envs
|
11 |
+
- 4
|
12 |
+
- - n_steps
|
13 |
+
- 1024
|
14 |
+
- - n_timesteps
|
15 |
+
- 1000000.0
|
16 |
+
- - normalize
|
17 |
+
- true
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Swimmer-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef047b7f92d64cf54ebcdca780950bedb06929c52e9efb766afc2f23f04de9c8
|
3 |
+
size 151697
|
ppo-Swimmer-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-Swimmer-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f92c4f3d670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92c4f3d700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92c4f3d790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92c4f3d820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f92c4f3d8b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f92c4f3d940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92c4f3d9d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92c4f3da60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f92c4f3daf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92c4f3db80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92c4f3dc10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92c4f3dca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f92c4f3f090>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float64",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWV6wsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"low": "[-1. -1.]",
|
45 |
+
"high": "[1. 1.]",
|
46 |
+
"bounded_below": "[ True True]",
|
47 |
+
"bounded_above": "[ True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 1003520,
|
52 |
+
"_total_timesteps": 1000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1673941688820036680,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVLQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfS9ob21lL2Nyb3VtZWdvdXMvUE9MWVRFQ0gvRE81L09wZW5fc291cmNlL29wZW5ybGJlbmNobWFyay8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx9L2hvbWUvY3JvdW1lZ291cy9QT0xZVEVDSC9ETzUvT3Blbl9zb3VyY2Uvb3BlbnJsYmVuY2htYXJrLy52ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0OpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
60 |
+
},
|
61 |
+
"tensorboard_log": null,
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWVLQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfS9ob21lL2Nyb3VtZWdvdXMvUE9MWVRFQ0gvRE81L09wZW5fc291cmNlL29wZW5ybGJlbmNobWFyay8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx9L2hvbWUvY3JvdW1lZ291cy9QT0xZVEVDSC9ETzUvT3Blbl9zb3VyY2Uvb3BlbnJsYmVuY2htYXJrLy52ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0OpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAAAIxRFYlFa/WM3IyUrniz/Au3m8atGjPyo30crEwLi/NLQN7wP6lD88owIe5a2sPzAdsYQWNa+/Du1eWfmYsD+WhyOtnFO0PwDQgZKJYy8/bJH4lwp2rT+oBeF4MwaIvySih+sAEa8/+Fvuyx4ps78APK/FgWmMP0aOucsLTrI/bD2RBxJgkj+wDl8dTvCJvzhU6EF8bK0/qNsCF3Hhhz/AwDy1oIJnP5C5Gho3XJ0/VkEwKq+Qtj+AIA1crFadP8IQfLh/4bQ/4FqMJNb1mb9goeeo2aSQP6ily69L+Y0/Pc6e7cEgqr+oxaBNAfWeP4LEbZwY2rY/4Ku/804mnz+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCIaUjAFDlHSUUpQu"
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIey5Tk6A/dECUhpRSlIwBbJRN6AOMAXSUR0CCDJMAWBSUdX2UKGgGaAloD0MIjdR7KucNdECUhpRSlGgVTegDaBZHQIIMhR0lqrR1fZQoaAZoCWgPQwgW+IpuPflzQJSGlFKUaBVN6ANoFkdAggx4pMHryHV9lChoBmgJaA9DCATKplzhAnRAlIaUUpRoFU3oA2gWR0CCDGkHlfZ3dX2UKGgGaAloD0MI9u0kInzsc0CUhpRSlGgVTegDaBZHQIIcAcBEKE51fZQoaAZoCWgPQwgxmpXtA6l0QJSGlFKUaBVN6ANoFkdAghvznA6+4HV9lChoBmgJaA9DCKYmwRtSHXRAlIaUUpRoFU3oA2gWR0CCG+blzU7TdX2UKGgGaAloD0MIuCHGa94PdECUhpRSlGgVTegDaBZHQIIb1z4k/r11fZQoaAZoCWgPQwhqvko+djt0QJSGlFKUaBVN6ANoFkdAgiuxFy7wrnV9lChoBmgJaA9DCDuPiv97KXRAlIaUUpRoFU3oA2gWR0CCK6MKkVN6dX2UKGgGaAloD0MIJjj1gaRGdECUhpRSlGgVTegDaBZHQIIrlpEhJRR1fZQoaAZoCWgPQwiILNLE+zt0QJSGlFKUaBVN6ANoFkdAgiuHKGL1mXV9lChoBmgJaA9DCHPXEvIB6HNAlIaUUpRoFU3oA2gWR0CCPBQ8fV7QdX2UKGgGaAloD0MI81meB3cidECUhpRSlGgVTegDaBZHQII8BnBciW51fZQoaAZoCWgPQwgoLPGAcjR0QJSGlFKUaBVN6ANoFkdAgjv5/Tb35HV9lChoBmgJaA9DCKoM427QKHRAlIaUUpRoFU3oA2gWR0CCO+qBmPHUdX2UKGgGaAloD0MIcsRafApCdECUhpRSlGgVTegDaBZHQIJOulhw2l51fZQoaAZoCWgPQwiYTBWMCgJ0QJSGlFKUaBVN6ANoFkdAgk6smfGuLnV9lChoBmgJaA9DCJfIBWdw7HNAlIaUUpRoFU3oA2gWR0CCTqA3DNyHdX2UKGgGaAloD0MIKuPfZxz4c0CUhpRSlGgVTegDaBZHQIJOkVBUrCp1fZQoaAZoCWgPQwhnD7QCg+RzQJSGlFKUaBVN6ANoFkdAgl8JokAxSHV9lChoBmgJaA9DCJwYkpNJFnRAlIaUUpRoFU3oA2gWR0CCXvugHu7ZdX2UKGgGaAloD0MIKjqSy78mdECUhpRSlGgVTegDaBZHQIJe7ylN1yN1fZQoaAZoCWgPQwgiUP2DSPNzQJSGlFKUaBVN6ANoFkdAgl7fz8P4EnV9lChoBmgJaA9DCNEF9S3zPHRAlIaUUpRoFU3oA2gWR0CCiE8brC3xdX2UKGgGaAloD0MIpyA/G3kIdECUhpRSlGgVTegDaBZHQIKIQTufEn91fZQoaAZoCWgPQwhz2eicHzx0QJSGlFKUaBVN6ANoFkdAgog0wSJ0n3V9lChoBmgJaA9DCOc5It+lJ3RAlIaUUpRoFU3oA2gWR0CCiCVafSQYdX2UKGgGaAloD0MIGqIKf8btc0CUhpRSlGgVTegDaBZHQIKXhWaMJhR1fZQoaAZoCWgPQwhHy4EeKhN0QJSGlFKUaBVN6ANoFkdAgpd3e3x4IXV9lChoBmgJaA9DCJW4jnGFY3RAlIaUUpRoFU3oA2gWR0CCl2sH0K7adX2UKGgGaAloD0MISwM/quFBdECUhpRSlGgVTegDaBZHQIKXW6iCaql1fZQoaAZoCWgPQwgZH2Yv2y90QJSGlFKUaBVN6ANoFkdAgqbnvMKTjnV9lChoBmgJaA9DCGivPh46E3RAlIaUUpRoFU3oA2gWR0CCptmZE2HddX2UKGgGaAloD0MIh9wMN2Dzc0CUhpRSlGgVTegDaBZHQIKmzNKRMex1fZQoaAZoCWgPQwhMbhRZawh0QJSGlFKUaBVN6ANoFkdAgqa9ETg2qHV9lChoBmgJaA9DCHnqkQa3KHRAlIaUUpRoFU3oA2gWR0CCtpbiZOSGdX2UKGgGaAloD0MIaTf6mA8NdECUhpRSlGgVTegDaBZHQIK2iNlyzX11fZQoaAZoCWgPQwiVgJiEi1R0QJSGlFKUaBVN6ANoFkdAgrZ8QiA2AHV9lChoBmgJaA9DCN5aJsNxMnRAlIaUUpRoFU3oA2gWR0CCtmzBRAKOdX2UKGgGaAloD0MIP+Hs1jIqdECUhpRSlGgVTegDaBZHQILGC4Ds+mp1fZQoaAZoCWgPQwjcfvlkxQd0QJSGlFKUaBVN6ANoFkdAgsX9k8Rtg3V9lChoBmgJaA9DCAZLdQEv/3NAlIaUUpRoFU3oA2gWR0CCxfD63y7PdX2UKGgGaAloD0MIQwHbwYiCdECUhpRSlGgVTegDaBZHQILF4WJrLyN1fZQoaAZoCWgPQwipL0s7NVJ0QJSGlFKUaBVN6ANoFkdAgtdrGaQV9HV9lChoBmgJaA9DCCIcs+wJDHRAlIaUUpRoFU3oA2gWR0CC110W/JvHdX2UKGgGaAloD0MIPrSPFXyKdECUhpRSlGgVTegDaBZHQILXUJdB0IV1fZQoaAZoCWgPQwig3SHFgBd0QJSGlFKUaBVN6ANoFkdAgtdBAfMfR3V9lChoBmgJaA9DCLrzxHN2bnRAlIaUUpRoFU3oA2gWR0CDCDD1oQFtdX2UKGgGaAloD0MI6C6JsyJ4dECUhpRSlGgVTegDaBZHQIMIIsyzoll1fZQoaAZoCWgPQwgmcyzvKnB0QJSGlFKUaBVN6ANoFkdAgwgWETQE6nV9lChoBmgJaA9DCPMbJhok6XNAlIaUUpRoFU3oA2gWR0CDCAZWJaaDdX2UKGgGaAloD0MIr9FyoEcLdECUhpRSlGgVTegDaBZHQIMciOo5xR51fZQoaAZoCWgPQwhzDp4JzeZzQJSGlFKUaBVN6ANoFkdAgxx7BGhEjXV9lChoBmgJaA9DCFbzHJHv9nNAlIaUUpRoFU3oA2gWR0CDHG5q/M4cdX2UKGgGaAloD0MI1EUKZaG8c0CUhpRSlGgVTegDaBZHQIMcXu9eyAx1fZQoaAZoCWgPQwg2AYblTyd0QJSGlFKUaBVN6ANoFkdAgy/WRaHKwXV9lChoBmgJaA9DCLa93ZLcznNAlIaUUpRoFU3oA2gWR0CDL8hOgxrSdX2UKGgGaAloD0MIyM1wAz7Hc0CUhpRSlGgVTegDaBZHQIMvvAqNIbx1fZQoaAZoCWgPQwgeUgyQ6DN0QJSGlFKUaBVN6ANoFkdAgy+s0YTCcnV9lChoBmgJaA9DCFSthVnoR3RAlIaUUpRoFU3oA2gWR0CDRCaFVT73dX2UKGgGaAloD0MIhjdr8D59dECUhpRSlGgVTegDaBZHQINEGKl54W11fZQoaAZoCWgPQwg6BI4EWv1zQJSGlFKUaBVN6ANoFkdAg0QMO5J9RnV9lChoBmgJaA9DCK1rtBwoP3RAlIaUUpRoFU3oA2gWR0CDQ/ydWhh6dX2UKGgGaAloD0MIHa7VHjYtdECUhpRSlGgVTegDaBZHQINUphlUZNx1fZQoaAZoCWgPQwijOh3Iehl0QJSGlFKUaBVN6ANoFkdAg1SX6Q/5cnV9lChoBmgJaA9DCLYxdsJLB3RAlIaUUpRoFU3oA2gWR0CDVIsf7rLRdX2UKGgGaAloD0MInrex2ZHgc0CUhpRSlGgVTegDaBZHQINUe3azu4R1fZQoaAZoCWgPQwi/C1uzlelzQJSGlFKUaBVN6ANoFkdAg2UzxwyZa3V9lChoBmgJaA9DCLqGGRpPFHRAlIaUUpRoFU3oA2gWR0CDZSWmgrYodX2UKGgGaAloD0MIJJ2BkRfvc0CUhpRSlGgVTegDaBZHQINlGPV/c351fZQoaAZoCWgPQwikF7X7VWZ0QJSGlFKUaBVN6ANoFkdAg2UJbMX7+HV9lChoBmgJaA9DCDaU2ovoAnRAlIaUUpRoFU3oA2gWR0CDjzYPoV2zdX2UKGgGaAloD0MISpo/prXVc0CUhpRSlGgVTegDaBZHQIOPJ+fAbhp1fZQoaAZoCWgPQwgr24e8JeRzQJSGlFKUaBVN6ANoFkdAg48bHQyAQXV9lChoBmgJaA9DCAvvchEfHnRAlIaUUpRoFU3oA2gWR0CDjwtapxWDdX2UKGgGaAloD0MI9KW3P5cWdECUhpRSlGgVTegDaBZHQIOe0TURWcV1fZQoaAZoCWgPQwgqN1FLswV0QJSGlFKUaBVN6ANoFkdAg57DIaLn93V9lChoBmgJaA9DCHaMKy4O7HNAlIaUUpRoFU3oA2gWR0CDnrZlFtsOdX2UKGgGaAloD0MIHXOesS/oc0CUhpRSlGgVTegDaBZHQIOepq/M4cZ1fZQoaAZoCWgPQwhRwHYwIjB0QJSGlFKUaBVN6ANoFkdAg65kEs8PnXV9lChoBmgJaA9DCG40gLcA9HNAlIaUUpRoFU3oA2gWR0CDrlXp4bCKdX2UKGgGaAloD0MIoSx8fW1fdECUhpRSlGgVTegDaBZHQIOuSc/dIoV1fZQoaAZoCWgPQwiy8stgDDp0QJSGlFKUaBVN6ANoFkdAg646H9FWn3V9lChoBmgJaA9DCDc3pidsSnRAlIaUUpRoFU3oA2gWR0CDvaoRZlnRdX2UKGgGaAloD0MIVKpE2RsFdECUhpRSlGgVTegDaBZHQIO9m98JD3N1fZQoaAZoCWgPQwixbOaQVO1zQJSGlFKUaBVN6ANoFkdAg72PFm4Aj3V9lChoBmgJaA9DCKvrUE0JKXRAlIaUUpRoFU3oA2gWR0CDvX9R77bddX2UKGgGaAloD0MIsaiI04lfdECUhpRSlGgVTegDaBZHQIPNJGUfPop1fZQoaAZoCWgPQwgnpDUGHbx0QJSGlFKUaBVN6ANoFkdAg80WNvOyFHV9lChoBmgJaA9DCCZRL/g0GHRAlIaUUpRoFU3oA2gWR0CDzQlvZRKpdX2UKGgGaAloD0MIbazEPGv7c0CUhpRSlGgVTegDaBZHQIPM+apgkTp1fZQoaAZoCWgPQwjNIamFUit0QJSGlFKUaBVN6ANoFkdAg9y26bvw3HV9lChoBmgJaA9DCNoeveH+JXRAlIaUUpRoFU3oA2gWR0CD3KkE9t/GdX2UKGgGaAloD0MIopv9gTIxdECUhpRSlGgVTegDaBZHQIPcnJFLFn91fZQoaAZoCWgPQwipFDsax+JzQJSGlFKUaBVN6ANoFkdAg9yNOmBOHnV9lChoBmgJaA9DCDj0Fg/vGXRAlIaUUpRoFU3oA2gWR0CD7cW1twaSdX2UKGgGaAloD0MIQEtXsM2edECUhpRSlGgVTegDaBZHQIPtt6Z6Uqx1fZQoaAZoCWgPQwiXOzPB8Jt0QJSGlFKUaBVN6ANoFkdAg+2q/mDDj3V9lChoBmgJaA9DCL6jxoTYNHRAlIaUUpRoFU3oA2gWR0CD7ZulXRw7dWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 2450,
|
88 |
+
"n_steps": 1024,
|
89 |
+
"gamma": 0.9999,
|
90 |
+
"gae_lambda": 0.98,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.5,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"batch_size": 256,
|
95 |
+
"n_epochs": 10,
|
96 |
+
"clip_range": {
|
97 |
+
":type:": "<class 'function'>",
|
98 |
+
":serialized:": "gAWVLQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfS9ob21lL2Nyb3VtZWdvdXMvUE9MWVRFQ0gvRE81L09wZW5fc291cmNlL29wZW5ybGJlbmNobWFyay8udmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIx9L2hvbWUvY3JvdW1lZ291cy9QT0xZVEVDSC9ETzUvT3Blbl9zb3VyY2Uvb3BlbnJsYmVuY2htYXJrLy52ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
99 |
+
},
|
100 |
+
"clip_range_vf": null,
|
101 |
+
"normalize_advantage": true,
|
102 |
+
"target_kl": null
|
103 |
+
}
|
ppo-Swimmer-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fafc033c16dfef36a0727730d241f84b61653680be9b72494155bbc2fd154b27
|
3 |
+
size 87280
|
ppo-Swimmer-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d9bdb4bc517a64995be10509b427b7c1f7e2d0b6588bf1bcb9d9b3604aaccd
|
3 |
+
size 43070
|
ppo-Swimmer-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Swimmer-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-137-generic-x86_64-with-glibc2.29 # 154-Ubuntu SMP Thu Jan 5 17:03:22 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.1
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a828494dfa62c3e6b70a835c0f66be62b7c393516f5d94558bac0a17c9b9f60f
|
3 |
+
size 1410371
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 334.43160509999996, "std_reward": 2.1119781167335776, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T09:06:29.270716"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4038f304849191fa926164e6b4a89b9d3c285ee2edd042383ddb0f478f373f39
|
3 |
+
size 32603
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:884df7d27d417177764ec9bc608c7abdceb7af32589d5195c14ba509152a9708
|
3 |
+
size 4517
|