crowbarmassage commited on
Commit
6173f26
1 Parent(s): c45b8ab

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -26
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.86
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.8208
36
- - Accuracy: 0.86
37
 
38
  ## Model description
39
 
@@ -53,38 +53,28 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 8
57
- - eval_batch_size: 8
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
- - num_epochs: 20
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 2.1942 | 1.0 | 113 | 2.1009 | 0.34 |
69
- | 1.5746 | 2.0 | 226 | 1.4756 | 0.59 |
70
- | 1.176 | 3.0 | 339 | 1.1244 | 0.72 |
71
- | 0.9955 | 4.0 | 452 | 0.9900 | 0.74 |
72
- | 0.7129 | 5.0 | 565 | 0.7653 | 0.79 |
73
- | 0.3957 | 6.0 | 678 | 0.6458 | 0.83 |
74
- | 0.4143 | 7.0 | 791 | 0.5677 | 0.84 |
75
- | 0.0693 | 8.0 | 904 | 0.6466 | 0.83 |
76
- | 0.1543 | 9.0 | 1017 | 0.6063 | 0.87 |
77
- | 0.0141 | 10.0 | 1130 | 0.6661 | 0.86 |
78
- | 0.0105 | 11.0 | 1243 | 0.6862 | 0.87 |
79
- | 0.1235 | 12.0 | 1356 | 0.7561 | 0.86 |
80
- | 0.0053 | 13.0 | 1469 | 0.7607 | 0.87 |
81
- | 0.0044 | 14.0 | 1582 | 0.7905 | 0.86 |
82
- | 0.004 | 15.0 | 1695 | 0.7764 | 0.86 |
83
- | 0.0036 | 16.0 | 1808 | 0.8037 | 0.86 |
84
- | 0.0187 | 17.0 | 1921 | 0.8085 | 0.86 |
85
- | 0.0027 | 18.0 | 2034 | 0.8106 | 0.86 |
86
- | 0.0027 | 19.0 | 2147 | 0.8178 | 0.86 |
87
- | 0.0029 | 20.0 | 2260 | 0.8208 | 0.86 |
88
 
89
 
90
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.87
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.8403
36
+ - Accuracy: 0.87
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.0376 | 1.0 | 57 | 0.6132 | 0.88 |
69
+ | 0.052 | 2.0 | 114 | 0.8688 | 0.84 |
70
+ | 0.0047 | 3.0 | 171 | 0.7919 | 0.84 |
71
+ | 0.0029 | 4.0 | 228 | 0.8666 | 0.85 |
72
+ | 0.0021 | 5.0 | 285 | 0.8617 | 0.87 |
73
+ | 0.0813 | 6.0 | 342 | 0.9202 | 0.86 |
74
+ | 0.0461 | 7.0 | 399 | 0.8868 | 0.85 |
75
+ | 0.0014 | 8.0 | 456 | 0.8567 | 0.86 |
76
+ | 0.0012 | 9.0 | 513 | 0.8471 | 0.86 |
77
+ | 0.0013 | 10.0 | 570 | 0.8403 | 0.87 |
 
 
 
 
 
 
 
 
 
 
78
 
79
 
80
  ### Framework versions