--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8208 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1942 | 1.0 | 113 | 2.1009 | 0.34 | | 1.5746 | 2.0 | 226 | 1.4756 | 0.59 | | 1.176 | 3.0 | 339 | 1.1244 | 0.72 | | 0.9955 | 4.0 | 452 | 0.9900 | 0.74 | | 0.7129 | 5.0 | 565 | 0.7653 | 0.79 | | 0.3957 | 6.0 | 678 | 0.6458 | 0.83 | | 0.4143 | 7.0 | 791 | 0.5677 | 0.84 | | 0.0693 | 8.0 | 904 | 0.6466 | 0.83 | | 0.1543 | 9.0 | 1017 | 0.6063 | 0.87 | | 0.0141 | 10.0 | 1130 | 0.6661 | 0.86 | | 0.0105 | 11.0 | 1243 | 0.6862 | 0.87 | | 0.1235 | 12.0 | 1356 | 0.7561 | 0.86 | | 0.0053 | 13.0 | 1469 | 0.7607 | 0.87 | | 0.0044 | 14.0 | 1582 | 0.7905 | 0.86 | | 0.004 | 15.0 | 1695 | 0.7764 | 0.86 | | 0.0036 | 16.0 | 1808 | 0.8037 | 0.86 | | 0.0187 | 17.0 | 1921 | 0.8085 | 0.86 | | 0.0027 | 18.0 | 2034 | 0.8106 | 0.86 | | 0.0027 | 19.0 | 2147 | 0.8178 | 0.86 | | 0.0029 | 20.0 | 2260 | 0.8208 | 0.86 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3