Update README.md
Browse files
README.md
CHANGED
@@ -17,73 +17,62 @@ tags: []
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
@@ -92,25 +81,23 @@ Use the code below to get started with the model.
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **Training regime:**
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
-
|
|
|
|
|
100 |
|
101 |
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
#### Factors
|
116 |
|
@@ -122,21 +109,26 @@ Use the code below to get started with the model.
|
|
122 |
|
123 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
[More Information Needed]
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
|
|
|
134 |
|
135 |
## Model Examination [optional]
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
@@ -144,29 +136,29 @@ Use the code below to get started with the model.
|
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
-
- **Cloud Provider:**
|
150 |
-
- **Compute Region
|
151 |
-
- **Carbon Emitted:**
|
152 |
|
153 |
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
+
- **Developed by:** me
|
21 |
+
- **Model type:** Mistral
|
22 |
+
- **Language(s) (NLP):** en
|
23 |
+
- **License:** apache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
## Uses
|
26 |
|
27 |
+
general web text completions at extremely low resource use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
### Out-of-Scope Use
|
30 |
|
31 |
+
not an instruct model
|
|
|
|
|
32 |
|
33 |
## Bias, Risks, and Limitations
|
34 |
|
35 |
+
trained on web text, though filtered no guarantees theres not toxic stuff in there
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## How to Get Started with the Model
|
38 |
|
39 |
Use the code below to get started with the model.
|
40 |
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
+
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("crumb/nano-mistral")
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("crumb/nano-mistral")
|
46 |
+
|
47 |
+
inputs = tokenizer(["Once upon a time,"], return_tensors="pt")
|
48 |
+
inputs = {k:v.to(model.device) for k,v in dict(inputs).items()}
|
49 |
+
outputs = model.generate(inputs, max_new_tokens=128, temperature=0.7, top_k=20, do_sample=True)
|
50 |
+
outputs = tokenizer.batch_decode(outputs)
|
51 |
+
for i in outputs:
|
52 |
+
print(i)
|
53 |
+
```
|
54 |
|
55 |
## Training Details
|
56 |
|
57 |
### Training Data
|
58 |
|
59 |
+
[crumb/askmistral-pile-2-15](https://huggingface.co/datasets/crumb/askmistral-pile-2-15)
|
|
|
|
|
60 |
|
61 |
### Training Procedure
|
62 |
|
63 |
+
| Parameter | Value |
|
64 |
+
| - | - |
|
65 |
+
| Context Length | 2048 |
|
66 |
+
| Batch Size | 128 |
|
67 |
+
| Learning Rate | 6e-4 |
|
68 |
+
| Scheduler | One-Cycle |
|
69 |
+
| Adam eps | 1e-8 |
|
70 |
+
| Adam beta1 | 0.9 |
|
71 |
+
| Adam beta2 | 0.95 |
|
72 |
+
| Weight Decay | 0.1 |
|
73 |
+
| Max Grad Norm | 1.0 |
|
74 |
+
| Optimizer | adamw_torch |
|
75 |
+
| Tokens | 3,401,640,960 |
|
76 |
|
77 |
#### Preprocessing [optional]
|
78 |
|
|
|
81 |
|
82 |
#### Training Hyperparameters
|
83 |
|
84 |
+
- **Training regime:** bf16 non-mixed precision <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
85 |
|
86 |
#### Speeds, Sizes, Times [optional]
|
87 |
|
88 |
+
train_runtime 62541.9424
|
89 |
+
|
90 |
+
train_samples_per_second 26.557
|
91 |
|
92 |
[More Information Needed]
|
93 |
|
94 |
## Evaluation
|
95 |
|
|
|
|
|
96 |
### Testing Data, Factors & Metrics
|
97 |
|
98 |
#### Testing Data
|
99 |
|
100 |
+
held out set of [crumb/askmistral-pile-2-15](https://huggingface.co/datasets/crumb/askmistral-pile-2-15)
|
|
|
|
|
101 |
|
102 |
#### Factors
|
103 |
|
|
|
109 |
|
110 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
111 |
|
112 |
+
open llm leaderboard eval datasets and settings
|
113 |
|
114 |
### Results
|
115 |
|
|
|
116 |
|
117 |
+
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
118 |
+
|-------------|------:|------|-----:|--------|-----:|---|-----:|
|
119 |
+
|arc_challenge| 1|none | 25|acc |0.1843|± |0.0113|
|
120 |
+
| | |none | 25|acc_norm|0.2167|± |0.0120|
|
121 |
+
|truthfulqa_mc2| 2|none | 0|acc |0.4719|± |0.0156|
|
122 |
+
|winogrande| 1|none | 5|acc |0.517|± | 0.014|
|
123 |
+
|hellaswag| 1|none | 10|acc |0.2803|± |0.0045|
|
124 |
+
| | |none | 10|acc_norm|0.2886|± |0.0045|
|
125 |
|
126 |
|
127 |
+
#### Summary
|
128 |
|
129 |
## Model Examination [optional]
|
130 |
|
131 |
+
its ok
|
|
|
|
|
132 |
|
133 |
## Environmental Impact
|
134 |
|
|
|
136 |
|
137 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
138 |
|
139 |
+
- **Hardware Type:** A6000
|
140 |
+
- **Hours used:** 34.74
|
141 |
+
- **Cloud Provider:** n/a
|
142 |
+
- **Compute Region** iowa
|
143 |
+
- **Carbon Emitted:** 4.5kg CO2eq.
|
144 |
|
145 |
## Technical Specifications [optional]
|
146 |
|
147 |
### Model Architecture and Objective
|
148 |
|
149 |
+
mistral, causal language modelling
|
150 |
|
151 |
### Compute Infrastructure
|
152 |
|
153 |
+
what
|
154 |
|
155 |
#### Hardware
|
156 |
|
157 |
+
lambda vector 2xA6000
|
158 |
|
159 |
#### Software
|
160 |
|
161 |
+
huggingface transformers / pytorch / custom trainer
|
162 |
|
163 |
## Citation [optional]
|
164 |
|