crumb commited on
Commit
4f18efa
1 Parent(s): 706fe01

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -67
README.md CHANGED
@@ -17,73 +17,62 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  #### Preprocessing [optional]
89
 
@@ -92,25 +81,23 @@ Use the code below to get started with the model.
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
100
 
101
  [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
@@ -122,21 +109,26 @@ Use the code below to get started with the model.
122
 
123
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
 
 
 
 
 
 
132
 
133
 
 
134
 
135
  ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
@@ -144,29 +136,29 @@ Use the code below to get started with the model.
144
 
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
  ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
 
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
+ - **Developed by:** me
21
+ - **Model type:** Mistral
22
+ - **Language(s) (NLP):** en
23
+ - **License:** apache
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Uses
26
 
27
+ general web text completions at extremely low resource use
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ### Out-of-Scope Use
30
 
31
+ not an instruct model
 
 
32
 
33
  ## Bias, Risks, and Limitations
34
 
35
+ trained on web text, though filtered no guarantees theres not toxic stuff in there
 
 
 
 
 
 
 
 
36
 
37
  ## How to Get Started with the Model
38
 
39
  Use the code below to get started with the model.
40
 
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+
44
+ model = AutoModelForCausalLM.from_pretrained("crumb/nano-mistral")
45
+ tokenizer = AutoTokenizer.from_pretrained("crumb/nano-mistral")
46
+
47
+ inputs = tokenizer(["Once upon a time,"], return_tensors="pt")
48
+ inputs = {k:v.to(model.device) for k,v in dict(inputs).items()}
49
+ outputs = model.generate(inputs, max_new_tokens=128, temperature=0.7, top_k=20, do_sample=True)
50
+ outputs = tokenizer.batch_decode(outputs)
51
+ for i in outputs:
52
+ print(i)
53
+ ```
54
 
55
  ## Training Details
56
 
57
  ### Training Data
58
 
59
+ [crumb/askmistral-pile-2-15](https://huggingface.co/datasets/crumb/askmistral-pile-2-15)
 
 
60
 
61
  ### Training Procedure
62
 
63
+ | Parameter | Value |
64
+ | - | - |
65
+ | Context Length | 2048 |
66
+ | Batch Size | 128 |
67
+ | Learning Rate | 6e-4 |
68
+ | Scheduler | One-Cycle |
69
+ | Adam eps | 1e-8 |
70
+ | Adam beta1 | 0.9 |
71
+ | Adam beta2 | 0.95 |
72
+ | Weight Decay | 0.1 |
73
+ | Max Grad Norm | 1.0 |
74
+ | Optimizer | adamw_torch |
75
+ | Tokens | 3,401,640,960 |
76
 
77
  #### Preprocessing [optional]
78
 
 
81
 
82
  #### Training Hyperparameters
83
 
84
+ - **Training regime:** bf16 non-mixed precision <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
85
 
86
  #### Speeds, Sizes, Times [optional]
87
 
88
+ train_runtime 62541.9424
89
+
90
+ train_samples_per_second 26.557
91
 
92
  [More Information Needed]
93
 
94
  ## Evaluation
95
 
 
 
96
  ### Testing Data, Factors & Metrics
97
 
98
  #### Testing Data
99
 
100
+ held out set of [crumb/askmistral-pile-2-15](https://huggingface.co/datasets/crumb/askmistral-pile-2-15)
 
 
101
 
102
  #### Factors
103
 
 
109
 
110
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
111
 
112
+ open llm leaderboard eval datasets and settings
113
 
114
  ### Results
115
 
 
116
 
117
+ | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
118
+ |-------------|------:|------|-----:|--------|-----:|---|-----:|
119
+ |arc_challenge| 1|none | 25|acc |0.1843|± |0.0113|
120
+ | | |none | 25|acc_norm|0.2167|± |0.0120|
121
+ |truthfulqa_mc2| 2|none | 0|acc |0.4719|± |0.0156|
122
+ |winogrande| 1|none | 5|acc |0.517|± | 0.014|
123
+ |hellaswag| 1|none | 10|acc |0.2803|± |0.0045|
124
+ | | |none | 10|acc_norm|0.2886|± |0.0045|
125
 
126
 
127
+ #### Summary
128
 
129
  ## Model Examination [optional]
130
 
131
+ its ok
 
 
132
 
133
  ## Environmental Impact
134
 
 
136
 
137
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
138
 
139
+ - **Hardware Type:** A6000
140
+ - **Hours used:** 34.74
141
+ - **Cloud Provider:** n/a
142
+ - **Compute Region** iowa
143
+ - **Carbon Emitted:** 4.5kg CO2eq.
144
 
145
  ## Technical Specifications [optional]
146
 
147
  ### Model Architecture and Objective
148
 
149
+ mistral, causal language modelling
150
 
151
  ### Compute Infrastructure
152
 
153
+ what
154
 
155
  #### Hardware
156
 
157
+ lambda vector 2xA6000
158
 
159
  #### Software
160
 
161
+ huggingface transformers / pytorch / custom trainer
162
 
163
  ## Citation [optional]
164