cruzlorite commited on
Commit
535e3c4
1 Parent(s): 88951d4

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:6233
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: 'as permitted by applicable law , in no event shall groupon , its
12
+ subsidiaries or affiliates or any of their respective employees , officers , directors
13
+ , agents , merchants , partners , third-party content providers or licensors ,
14
+ or any of their officers , directors , employees , or agents , be liable for any
15
+ direct or indirect lost profits or lost business damages , indirect , incidental
16
+ , special , consequential , or punitive damages arising out of , related to ,
17
+ or in connection with any of the following : -lrb- a -rrb- your use of the site
18
+ , the content , user content , including , without limitation , any personal information
19
+ , and any other information either contained in the site or submitted by you to
20
+ the site ; -lrb- b -rrb- your inability to use the site ; -lrb- c -rrb- modification
21
+ or removal of content submitted on the site ; -lrb- d -rrb- the merchant offerings
22
+ , products , and other available programs accessible or available through the
23
+ site ; -lrb- e -rrb- any products or services purchased or obtained directly from
24
+ a merchant ; -lrb- f -rrb- these terms of use ; or -lrb- g -rrb- any improper
25
+ use of information you provide to the site , including , without limitation ,
26
+ any personal information .'
27
+ sentences:
28
+ - since the clause states that the provider is not liable for any loss resulting
29
+ from the use of the service and or of the website, including lost profits, lost
30
+ opportunity, lost business or lost sales
31
+ - since the clause states that the provider is not liable for any special, direct
32
+ and/or indirect, punitive, incidental or consequential damage, including negligence,
33
+ harm or failure
34
+ - since the contract or access may be terminated where the user fails to maintain
35
+ a prescribed level of reputation.
36
+ - source_sentence: however , vivino reserves the right to -lrb- i -rrb- remove , suspend
37
+ , edit or modify any content in its sole discretion , including without limitation
38
+ any user submissions at any time , without notice to you and for any reason -lrb-
39
+ including , but not limited to , upon receipt of claims or allegations from third
40
+ parties or authorities relating to such content or if vivino is concerned that
41
+ you may have violated these terms of use -rrb- , or for no reason at all and -lrb-
42
+ ii -rrb- to remove , suspend or block any user submissions from the service .
43
+ sentences:
44
+ - Since the clause states that the provider has the right to remove content and
45
+ material if they constitute a violation of third party rights, including trademarks
46
+ - 'since the clause states that except as required by law, or to the fullest extent
47
+ permissible by applicable law the provider is not liable, or that the users are
48
+ solely responsible for ensuring that the Terms of Use/Service are in compliance
49
+ with all laws, rules and regulations '
50
+ - since the clause states that the compensation for liability or aggregate liability
51
+ is limited to, or should not exceed, a certain total amount, or that the sole
52
+ remedy is to stop using the service and cancel the account, or that you can't
53
+ recover any damages or losses
54
+ - source_sentence: we will not incur any liability or responsibility if we choose
55
+ to remove , disable or delete such access or ability to use any or all portion
56
+ -lrb- s -rrb- of the services .
57
+ sentences:
58
+ - 'since the clause states that except as required by law, or to the fullest extent
59
+ permissible by applicable law the provider is not liable, or that the users are
60
+ solely responsible for ensuring that the Terms of Use/Service are in compliance
61
+ with all laws, rules and regulations '
62
+ - since the clause states that the provider is not liable under different theories
63
+ of liability, including tort law, contract law, strict liability, statutory liability,
64
+ product liability and other liability theories
65
+ - since the clause mentions the contract or access may be terminated but does not
66
+ state the grounds for termination.
67
+ - source_sentence: in such event , supercell shall not be required to provide refunds
68
+ , benefits or other compensation to users in connection with such discontinued
69
+ service .
70
+ sentences:
71
+ - since the clause states that the provider is not liable even if he was, or should
72
+ have been, aware or have been advised about the possibility of any damage or loss
73
+ - since the contract or access can be terminated where the user fails to adhere
74
+ to its terms, or community standards, or the spirit of the ToS or community terms,
75
+ including inappropriate behaviour, using cheats or other disallowed practices
76
+ to improve their situation in the service, deriving disallowed profits from the
77
+ service, or interfering with other users' enjoyment of the service or otherwise
78
+ puts them at risk, or is investigated under any suspision of misconduct.
79
+ - 'since the clause states that the provider is not liable for any technical problems,
80
+ failure, suspension, disruption, modification, discontinuance, unavailability
81
+ of service, any unilateral change, unilateral termination, unilateral limitation including limits
82
+ on certain features and services or restricttion to access to parts or all of
83
+ the Service without notice '
84
+ - source_sentence: we may change the price of the services at any time and if you
85
+ have a recurring purchase , we will notify you by email at least 15 days before
86
+ the price change .
87
+ sentences:
88
+ - 'Since the clause states that the provider has the right for unilateral change
89
+ of the contract/services/goods/features for any reason at its full discretion,
90
+ at any time '
91
+ - 'Since the clause states that the provider has the right for unilateral change
92
+ of the contract/services/goods/features for any reason at its full discretion,
93
+ at any time '
94
+ - since the clause states that the provider is not liable even if he was, or should
95
+ have been, aware or have been advised about the possibility of any damage or loss
96
+ pipeline_tag: sentence-similarity
97
+ library_name: sentence-transformers
98
+ metrics:
99
+ - cosine_accuracy
100
+ - cosine_accuracy_threshold
101
+ - cosine_f1
102
+ - cosine_f1_threshold
103
+ - cosine_precision
104
+ - cosine_recall
105
+ - cosine_ap
106
+ - dot_accuracy
107
+ - dot_accuracy_threshold
108
+ - dot_f1
109
+ - dot_f1_threshold
110
+ - dot_precision
111
+ - dot_recall
112
+ - dot_ap
113
+ - manhattan_accuracy
114
+ - manhattan_accuracy_threshold
115
+ - manhattan_f1
116
+ - manhattan_f1_threshold
117
+ - manhattan_precision
118
+ - manhattan_recall
119
+ - manhattan_ap
120
+ - euclidean_accuracy
121
+ - euclidean_accuracy_threshold
122
+ - euclidean_f1
123
+ - euclidean_f1_threshold
124
+ - euclidean_precision
125
+ - euclidean_recall
126
+ - euclidean_ap
127
+ - max_accuracy
128
+ - max_accuracy_threshold
129
+ - max_f1
130
+ - max_f1_threshold
131
+ - max_precision
132
+ - max_recall
133
+ - max_ap
134
+ model-index:
135
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
136
+ results:
137
+ - task:
138
+ type: binary-classification
139
+ name: Binary Classification
140
+ dataset:
141
+ name: eval
142
+ type: eval
143
+ metrics:
144
+ - type: cosine_accuracy
145
+ value: 0.8888888888888888
146
+ name: Cosine Accuracy
147
+ - type: cosine_accuracy_threshold
148
+ value: 0.7393813133239746
149
+ name: Cosine Accuracy Threshold
150
+ - type: cosine_f1
151
+ value: 0.8966442953020134
152
+ name: Cosine F1
153
+ - type: cosine_f1_threshold
154
+ value: 0.7284817099571228
155
+ name: Cosine F1 Threshold
156
+ - type: cosine_precision
157
+ value: 0.8608247422680413
158
+ name: Cosine Precision
159
+ - type: cosine_recall
160
+ value: 0.9355742296918768
161
+ name: Cosine Recall
162
+ - type: cosine_ap
163
+ value: 0.9472776717150163
164
+ name: Cosine Ap
165
+ - type: dot_accuracy
166
+ value: 0.8888888888888888
167
+ name: Dot Accuracy
168
+ - type: dot_accuracy_threshold
169
+ value: 0.7393813133239746
170
+ name: Dot Accuracy Threshold
171
+ - type: dot_f1
172
+ value: 0.8966442953020134
173
+ name: Dot F1
174
+ - type: dot_f1_threshold
175
+ value: 0.7284817099571228
176
+ name: Dot F1 Threshold
177
+ - type: dot_precision
178
+ value: 0.8608247422680413
179
+ name: Dot Precision
180
+ - type: dot_recall
181
+ value: 0.9355742296918768
182
+ name: Dot Recall
183
+ - type: dot_ap
184
+ value: 0.9472776717150163
185
+ name: Dot Ap
186
+ - type: manhattan_accuracy
187
+ value: 0.8888888888888888
188
+ name: Manhattan Accuracy
189
+ - type: manhattan_accuracy_threshold
190
+ value: 15.613447189331055
191
+ name: Manhattan Accuracy Threshold
192
+ - type: manhattan_f1
193
+ value: 0.896921017402945
194
+ name: Manhattan F1
195
+ - type: manhattan_f1_threshold
196
+ value: 15.90174674987793
197
+ name: Manhattan F1 Threshold
198
+ - type: manhattan_precision
199
+ value: 0.8589743589743589
200
+ name: Manhattan Precision
201
+ - type: manhattan_recall
202
+ value: 0.938375350140056
203
+ name: Manhattan Recall
204
+ - type: manhattan_ap
205
+ value: 0.947924181751851
206
+ name: Manhattan Ap
207
+ - type: euclidean_accuracy
208
+ value: 0.8888888888888888
209
+ name: Euclidean Accuracy
210
+ - type: euclidean_accuracy_threshold
211
+ value: 0.7219676971435547
212
+ name: Euclidean Accuracy Threshold
213
+ - type: euclidean_f1
214
+ value: 0.8966442953020134
215
+ name: Euclidean F1
216
+ - type: euclidean_f1_threshold
217
+ value: 0.7369099855422974
218
+ name: Euclidean F1 Threshold
219
+ - type: euclidean_precision
220
+ value: 0.8608247422680413
221
+ name: Euclidean Precision
222
+ - type: euclidean_recall
223
+ value: 0.9355742296918768
224
+ name: Euclidean Recall
225
+ - type: euclidean_ap
226
+ value: 0.9472776717150163
227
+ name: Euclidean Ap
228
+ - type: max_accuracy
229
+ value: 0.8888888888888888
230
+ name: Max Accuracy
231
+ - type: max_accuracy_threshold
232
+ value: 15.613447189331055
233
+ name: Max Accuracy Threshold
234
+ - type: max_f1
235
+ value: 0.896921017402945
236
+ name: Max F1
237
+ - type: max_f1_threshold
238
+ value: 15.90174674987793
239
+ name: Max F1 Threshold
240
+ - type: max_precision
241
+ value: 0.8608247422680413
242
+ name: Max Precision
243
+ - type: max_recall
244
+ value: 0.938375350140056
245
+ name: Max Recall
246
+ - type: max_ap
247
+ value: 0.947924181751851
248
+ name: Max Ap
249
+ ---
250
+
251
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
252
+
253
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
254
+
255
+ ## Model Details
256
+
257
+ ### Model Description
258
+ - **Model Type:** Sentence Transformer
259
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
260
+ - **Maximum Sequence Length:** 384 tokens
261
+ - **Output Dimensionality:** 768 tokens
262
+ - **Similarity Function:** Cosine Similarity
263
+ <!-- - **Training Dataset:** Unknown -->
264
+ <!-- - **Language:** Unknown -->
265
+ <!-- - **License:** Unknown -->
266
+
267
+ ### Model Sources
268
+
269
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
270
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
271
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
272
+
273
+ ### Full Model Architecture
274
+
275
+ ```
276
+ SentenceTransformer(
277
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
278
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
279
+ (2): Normalize()
280
+ )
281
+ ```
282
+
283
+ ## Usage
284
+
285
+ ### Direct Usage (Sentence Transformers)
286
+
287
+ First install the Sentence Transformers library:
288
+
289
+ ```bash
290
+ pip install -U sentence-transformers
291
+ ```
292
+
293
+ Then you can load this model and run inference.
294
+ ```python
295
+ from sentence_transformers import SentenceTransformer
296
+
297
+ # Download from the 🤗 Hub
298
+ model = SentenceTransformer("cruzlorite/all-mpnet-base-v2-unfair-tos-rationale")
299
+ # Run inference
300
+ sentences = [
301
+ 'we may change the price of the services at any time and if you have a recurring purchase , we will notify you by email at least 15 days before the price change .',
302
+ 'Since the clause states that the provider has the right for unilateral change of the contract/services/goods/features for any reason at its full discretion, at any time ',
303
+ 'Since the clause states that the provider has the right for unilateral change of the contract/services/goods/features for any reason at its full discretion, at any time ',
304
+ ]
305
+ embeddings = model.encode(sentences)
306
+ print(embeddings.shape)
307
+ # [3, 768]
308
+
309
+ # Get the similarity scores for the embeddings
310
+ similarities = model.similarity(embeddings, embeddings)
311
+ print(similarities.shape)
312
+ # [3, 3]
313
+ ```
314
+
315
+ <!--
316
+ ### Direct Usage (Transformers)
317
+
318
+ <details><summary>Click to see the direct usage in Transformers</summary>
319
+
320
+ </details>
321
+ -->
322
+
323
+ <!--
324
+ ### Downstream Usage (Sentence Transformers)
325
+
326
+ You can finetune this model on your own dataset.
327
+
328
+ <details><summary>Click to expand</summary>
329
+
330
+ </details>
331
+ -->
332
+
333
+ <!--
334
+ ### Out-of-Scope Use
335
+
336
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
337
+ -->
338
+
339
+ ## Evaluation
340
+
341
+ ### Metrics
342
+
343
+ #### Binary Classification
344
+ * Dataset: `eval`
345
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
346
+
347
+ | Metric | Value |
348
+ |:-----------------------------|:-----------|
349
+ | cosine_accuracy | 0.8889 |
350
+ | cosine_accuracy_threshold | 0.7394 |
351
+ | cosine_f1 | 0.8966 |
352
+ | cosine_f1_threshold | 0.7285 |
353
+ | cosine_precision | 0.8608 |
354
+ | cosine_recall | 0.9356 |
355
+ | cosine_ap | 0.9473 |
356
+ | dot_accuracy | 0.8889 |
357
+ | dot_accuracy_threshold | 0.7394 |
358
+ | dot_f1 | 0.8966 |
359
+ | dot_f1_threshold | 0.7285 |
360
+ | dot_precision | 0.8608 |
361
+ | dot_recall | 0.9356 |
362
+ | dot_ap | 0.9473 |
363
+ | manhattan_accuracy | 0.8889 |
364
+ | manhattan_accuracy_threshold | 15.6134 |
365
+ | manhattan_f1 | 0.8969 |
366
+ | manhattan_f1_threshold | 15.9017 |
367
+ | manhattan_precision | 0.859 |
368
+ | manhattan_recall | 0.9384 |
369
+ | manhattan_ap | 0.9479 |
370
+ | euclidean_accuracy | 0.8889 |
371
+ | euclidean_accuracy_threshold | 0.722 |
372
+ | euclidean_f1 | 0.8966 |
373
+ | euclidean_f1_threshold | 0.7369 |
374
+ | euclidean_precision | 0.8608 |
375
+ | euclidean_recall | 0.9356 |
376
+ | euclidean_ap | 0.9473 |
377
+ | max_accuracy | 0.8889 |
378
+ | max_accuracy_threshold | 15.6134 |
379
+ | max_f1 | 0.8969 |
380
+ | max_f1_threshold | 15.9017 |
381
+ | max_precision | 0.8608 |
382
+ | max_recall | 0.9384 |
383
+ | **max_ap** | **0.9479** |
384
+
385
+ <!--
386
+ ## Bias, Risks and Limitations
387
+
388
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
389
+ -->
390
+
391
+ <!--
392
+ ### Recommendations
393
+
394
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
395
+ -->
396
+
397
+ ## Training Details
398
+
399
+ ### Training Dataset
400
+
401
+ #### Unnamed Dataset
402
+
403
+
404
+ * Size: 6,233 training samples
405
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
406
+ * Approximate statistics based on the first 1000 samples:
407
+ | | sentence1 | sentence2 | label |
408
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
409
+ | type | string | string | int |
410
+ | details | <ul><li>min: 8 tokens</li><li>mean: 63.0 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 41.12 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
411
+ * Samples:
412
+ | sentence1 | sentence2 | label |
413
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
414
+ | <code>we may revise these terms from time to time and the most current version will always be posted on our website .</code> | <code>Since the clause states that the provider has the right for unilateral change of the contract/services/goods/features where the notification of changes is left at a full discretion of the provider such as by simply posting the new terms on their website without a notification to the consumer</code> | <code>1</code> |
415
+ | <code>neither fitbit , its suppliers , or licensors , nor any other party involved in creating , producing , or delivering the fitbit service will be liable for any incidental , special , exemplary , or consequential damages , including lost profits , loss of data or goodwill , service interruption , computer damage , or system failure or the cost of substitute services arising out of or in connection with these terms or from the use of or inability to use the fitbit service , whether based on warranty , contract , tort -lrb- including negligence -rrb- , product liability , or any other legal theory , and whether or not fitbit has been informed of the possibility of such damage , even if a limited remedy set forth herein is found to have failed of its essential purpose .</code> | <code>since the clause states that the provider is not liable even if he was, or should have been, aware or have been advised about the possibility of any damage or loss</code> | <code>1</code> |
416
+ | <code>the company reserves the right -lrb- but has no obligation -rrb- , at its sole discretion and without prior notice to :</code> | <code>Since the clause states that the provider has the right to remove content and material if he believes that there is a case violation of terms such as acount tranfer, policies, standard, code of conduct</code> | <code>1</code> |
417
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
418
+
419
+ ### Evaluation Dataset
420
+
421
+ #### Unnamed Dataset
422
+
423
+
424
+ * Size: 693 evaluation samples
425
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
426
+ * Approximate statistics based on the first 693 samples:
427
+ | | sentence1 | sentence2 | label |
428
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
429
+ | type | string | string | int |
430
+ | details | <ul><li>min: 8 tokens</li><li>mean: 63.59 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 42.75 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>0: ~48.48%</li><li>1: ~51.52%</li></ul> |
431
+ * Samples:
432
+ | sentence1 | sentence2 | label |
433
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
434
+ | <code>you expressly understand and agree that evernote , its subsidiaries , affiliates , service providers , and licensors , and our and their respective officers , employees , agents and successors shall not be liable to you for any direct , indirect , incidental , special , consequential or exemplary damages , including but not limited to , damages for loss of profits , goodwill , use , data , cover or other intangible losses -lrb- even if evernote has been advised of the possibility of such damages -rrb- resulting from : -lrb- i -rrb- the use or the inability to use the service or to use promotional codes or evernote points ; -lrb- ii -rrb- the cost of procurement of substitute services resulting from any data , information or service purchased or obtained or messages received or transactions entered into through or from the service ; -lrb- iii -rrb- unauthorized access to or the loss , corruption or alteration of your transmissions , content or data ; -lrb- iv -rrb- statements or conduct of any third party on or using the service , or providing any services related to the operation of the service ; -lrb- v -rrb- evernote 's actions or omissions in reliance upon your basic subscriber information and any changes thereto or notices received therefrom ; -lrb- vi -rrb- your failure to protect the confidentiality of any passwords or access rights to your account ; -lrb- vii -rrb- the acts or omissions of any third party using or integrating with the service ; -lrb- viii -rrb- any advertising content or your purchase or use of any advertised or other third-party product or service ; -lrb- ix -rrb- the termination of your account in accordance with the terms of these terms of service ; or -lrb- x -rrb- any other matter relating to the service .</code> | <code>since the clause states that the provider is not liable for any information stored or processed within the Services, inaccuracies or error of information, content and material posted, software, products and services on the website, including copyright violation, defamation, slander, libel, falsehoods, obscenity, pornography, profanity, or objectionable material</code> | <code>1</code> |
435
+ | <code>to the fullest extent permitted by law , badoo expressly excludes :</code> | <code>since the clause states that the provider is not liable even if he was, or should have been, aware or have been advised about the possibility of any damage or loss</code> | <code>1</code> |
436
+ | <code>notwithstanding any other remedies available to truecaller , you agree that truecaller may suspend or terminate your use of the services without notice if you use the services or the content in any prohibited manner , and that such use will be deemed a material breach of these terms .</code> | <code>since the clause generally states the contract or access may be terminated in an event of a force majeure, act of God or other unforeseen events of a similar nature.</code> | <code>0</code> |
437
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
438
+
439
+ ### Training Hyperparameters
440
+ #### Non-Default Hyperparameters
441
+
442
+ - `eval_strategy`: steps
443
+ - `per_device_train_batch_size`: 16
444
+ - `per_device_eval_batch_size`: 16
445
+ - `learning_rate`: 2e-05
446
+ - `num_train_epochs`: 2
447
+ - `warmup_ratio`: 0.1
448
+ - `fp16`: True
449
+
450
+ #### All Hyperparameters
451
+ <details><summary>Click to expand</summary>
452
+
453
+ - `overwrite_output_dir`: False
454
+ - `do_predict`: False
455
+ - `eval_strategy`: steps
456
+ - `prediction_loss_only`: True
457
+ - `per_device_train_batch_size`: 16
458
+ - `per_device_eval_batch_size`: 16
459
+ - `per_gpu_train_batch_size`: None
460
+ - `per_gpu_eval_batch_size`: None
461
+ - `gradient_accumulation_steps`: 1
462
+ - `eval_accumulation_steps`: None
463
+ - `torch_empty_cache_steps`: None
464
+ - `learning_rate`: 2e-05
465
+ - `weight_decay`: 0.0
466
+ - `adam_beta1`: 0.9
467
+ - `adam_beta2`: 0.999
468
+ - `adam_epsilon`: 1e-08
469
+ - `max_grad_norm`: 1.0
470
+ - `num_train_epochs`: 2
471
+ - `max_steps`: -1
472
+ - `lr_scheduler_type`: linear
473
+ - `lr_scheduler_kwargs`: {}
474
+ - `warmup_ratio`: 0.1
475
+ - `warmup_steps`: 0
476
+ - `log_level`: passive
477
+ - `log_level_replica`: warning
478
+ - `log_on_each_node`: True
479
+ - `logging_nan_inf_filter`: True
480
+ - `save_safetensors`: True
481
+ - `save_on_each_node`: False
482
+ - `save_only_model`: False
483
+ - `restore_callback_states_from_checkpoint`: False
484
+ - `no_cuda`: False
485
+ - `use_cpu`: False
486
+ - `use_mps_device`: False
487
+ - `seed`: 42
488
+ - `data_seed`: None
489
+ - `jit_mode_eval`: False
490
+ - `use_ipex`: False
491
+ - `bf16`: False
492
+ - `fp16`: True
493
+ - `fp16_opt_level`: O1
494
+ - `half_precision_backend`: auto
495
+ - `bf16_full_eval`: False
496
+ - `fp16_full_eval`: False
497
+ - `tf32`: None
498
+ - `local_rank`: 0
499
+ - `ddp_backend`: None
500
+ - `tpu_num_cores`: None
501
+ - `tpu_metrics_debug`: False
502
+ - `debug`: []
503
+ - `dataloader_drop_last`: False
504
+ - `dataloader_num_workers`: 0
505
+ - `dataloader_prefetch_factor`: None
506
+ - `past_index`: -1
507
+ - `disable_tqdm`: False
508
+ - `remove_unused_columns`: True
509
+ - `label_names`: None
510
+ - `load_best_model_at_end`: False
511
+ - `ignore_data_skip`: False
512
+ - `fsdp`: []
513
+ - `fsdp_min_num_params`: 0
514
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
515
+ - `fsdp_transformer_layer_cls_to_wrap`: None
516
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
517
+ - `deepspeed`: None
518
+ - `label_smoothing_factor`: 0.0
519
+ - `optim`: adamw_torch
520
+ - `optim_args`: None
521
+ - `adafactor`: False
522
+ - `group_by_length`: False
523
+ - `length_column_name`: length
524
+ - `ddp_find_unused_parameters`: None
525
+ - `ddp_bucket_cap_mb`: None
526
+ - `ddp_broadcast_buffers`: False
527
+ - `dataloader_pin_memory`: True
528
+ - `dataloader_persistent_workers`: False
529
+ - `skip_memory_metrics`: True
530
+ - `use_legacy_prediction_loop`: False
531
+ - `push_to_hub`: False
532
+ - `resume_from_checkpoint`: None
533
+ - `hub_model_id`: None
534
+ - `hub_strategy`: every_save
535
+ - `hub_private_repo`: False
536
+ - `hub_always_push`: False
537
+ - `gradient_checkpointing`: False
538
+ - `gradient_checkpointing_kwargs`: None
539
+ - `include_inputs_for_metrics`: False
540
+ - `eval_do_concat_batches`: True
541
+ - `fp16_backend`: auto
542
+ - `push_to_hub_model_id`: None
543
+ - `push_to_hub_organization`: None
544
+ - `mp_parameters`:
545
+ - `auto_find_batch_size`: False
546
+ - `full_determinism`: False
547
+ - `torchdynamo`: None
548
+ - `ray_scope`: last
549
+ - `ddp_timeout`: 1800
550
+ - `torch_compile`: False
551
+ - `torch_compile_backend`: None
552
+ - `torch_compile_mode`: None
553
+ - `dispatch_batches`: None
554
+ - `split_batches`: None
555
+ - `include_tokens_per_second`: False
556
+ - `include_num_input_tokens_seen`: False
557
+ - `neftune_noise_alpha`: None
558
+ - `optim_target_modules`: None
559
+ - `batch_eval_metrics`: False
560
+ - `eval_on_start`: False
561
+ - `use_liger_kernel`: False
562
+ - `eval_use_gather_object`: False
563
+ - `batch_sampler`: batch_sampler
564
+ - `multi_dataset_batch_sampler`: proportional
565
+
566
+ </details>
567
+
568
+ ### Training Logs
569
+ | Epoch | Step | Training Loss | loss | eval_max_ap |
570
+ |:------:|:----:|:-------------:|:------:|:-----------:|
571
+ | 0 | 0 | - | - | 0.6125 |
572
+ | 0.2564 | 100 | 0.9286 | 0.4118 | 0.8794 |
573
+ | 0.5128 | 200 | 0.3916 | 0.2868 | 0.9177 |
574
+ | 0.7692 | 300 | 0.3414 | 0.2412 | 0.9448 |
575
+ | 1.0256 | 400 | 0.2755 | 0.2103 | 0.9470 |
576
+ | 1.2821 | 500 | 0.1893 | 0.1892 | 0.9486 |
577
+ | 1.5385 | 600 | 0.1557 | 0.1709 | 0.9548 |
578
+ | 1.7949 | 700 | 0.1566 | 0.1888 | 0.9479 |
579
+
580
+
581
+ ### Framework Versions
582
+ - Python: 3.10.12
583
+ - Sentence Transformers: 3.1.1
584
+ - Transformers: 4.45.2
585
+ - PyTorch: 2.5.1+cu121
586
+ - Accelerate: 1.1.1
587
+ - Datasets: 3.1.0
588
+ - Tokenizers: 0.20.3
589
+
590
+ ## Citation
591
+
592
+ ### BibTeX
593
+
594
+ #### Sentence Transformers
595
+ ```bibtex
596
+ @inproceedings{reimers-2019-sentence-bert,
597
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
598
+ author = "Reimers, Nils and Gurevych, Iryna",
599
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
600
+ month = "11",
601
+ year = "2019",
602
+ publisher = "Association for Computational Linguistics",
603
+ url = "https://arxiv.org/abs/1908.10084",
604
+ }
605
+ ```
606
+
607
+ <!--
608
+ ## Glossary
609
+
610
+ *Clearly define terms in order to be accessible across audiences.*
611
+ -->
612
+
613
+ <!--
614
+ ## Model Card Authors
615
+
616
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
617
+ -->
618
+
619
+ <!--
620
+ ## Model Card Contact
621
+
622
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
623
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6822189431560a3cfda0501d5712faf0f733d72b0edf59fc675e94e9be80d52
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff