--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - genbed - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-all-bem-genbed-f-model results: [] --- # mms-1b-all-bem-genbed-f-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.1823 - Wer: 0.3431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.6556 | 0.1370 | 100 | 0.5951 | 0.6643 | | 0.4415 | 0.2740 | 200 | 0.2734 | 0.4565 | | 0.3448 | 0.4110 | 300 | 0.2482 | 0.4289 | | 0.3459 | 0.5479 | 400 | 0.2392 | 0.4149 | | 0.3184 | 0.6849 | 500 | 0.2304 | 0.4085 | | 0.3058 | 0.8219 | 600 | 0.2372 | 0.4108 | | 0.3077 | 0.9589 | 700 | 0.2271 | 0.4172 | | 0.2812 | 1.0959 | 800 | 0.2217 | 0.3983 | | 0.3297 | 1.2329 | 900 | 0.2209 | 0.3984 | | 0.2817 | 1.3699 | 1000 | 0.2163 | 0.4124 | | 0.2927 | 1.5068 | 1100 | 0.2146 | 0.3863 | | 0.2806 | 1.6438 | 1200 | 0.2106 | 0.3851 | | 0.2574 | 1.7808 | 1300 | 0.2098 | 0.3866 | | 0.2829 | 1.9178 | 1400 | 0.2067 | 0.3772 | | 0.2764 | 2.0548 | 1500 | 0.2076 | 0.3789 | | 0.2635 | 2.1918 | 1600 | 0.2076 | 0.3769 | | 0.2761 | 2.3288 | 1700 | 0.2068 | 0.3801 | | 0.2854 | 2.4658 | 1800 | 0.1994 | 0.3645 | | 0.2557 | 2.6027 | 1900 | 0.2016 | 0.3861 | | 0.2717 | 2.7397 | 2000 | 0.2011 | 0.3734 | | 0.2504 | 2.8767 | 2100 | 0.1989 | 0.3674 | | 0.2606 | 3.0137 | 2200 | 0.1990 | 0.3835 | | 0.2583 | 3.1507 | 2300 | 0.2028 | 0.3666 | | 0.2591 | 3.2877 | 2400 | 0.1952 | 0.3507 | | 0.2408 | 3.4247 | 2500 | 0.1988 | 0.3637 | | 0.2485 | 3.5616 | 2600 | 0.1972 | 0.3593 | | 0.2474 | 3.6986 | 2700 | 0.1949 | 0.3534 | | 0.2398 | 3.8356 | 2800 | 0.1959 | 0.3697 | | 0.2512 | 3.9726 | 2900 | 0.1906 | 0.3559 | | 0.2266 | 4.1096 | 3000 | 0.1905 | 0.3482 | | 0.2538 | 4.2466 | 3100 | 0.1916 | 0.3521 | | 0.2268 | 4.3836 | 3200 | 0.1914 | 0.3895 | | 0.2249 | 4.5205 | 3300 | 0.1897 | 0.3417 | | 0.2416 | 4.6575 | 3400 | 0.1877 | 0.3458 | | 0.2421 | 4.7945 | 3500 | 0.1872 | 0.3412 | | 0.244 | 4.9315 | 3600 | 0.1855 | 0.3528 | | 0.2371 | 5.0685 | 3700 | 0.1871 | 0.3447 | | 0.2383 | 5.2055 | 3800 | 0.1833 | 0.3523 | | 0.2409 | 5.3425 | 3900 | 0.1886 | 0.3487 | | 0.2312 | 5.4795 | 4000 | 0.1848 | 0.3438 | | 0.2261 | 5.6164 | 4100 | 0.1866 | 0.3469 | | 0.2169 | 5.7534 | 4200 | 0.1841 | 0.3376 | | 0.2283 | 5.8904 | 4300 | 0.1865 | 0.3412 | | 0.2182 | 6.0274 | 4400 | 0.1823 | 0.3431 | | 0.2141 | 6.1644 | 4500 | 0.1858 | 0.3403 | | 0.2127 | 6.3014 | 4600 | 0.1876 | 0.3356 | | 0.229 | 6.4384 | 4700 | 0.1863 | 0.3361 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0