--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - genbed - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bemgen-combined-model results: [] --- # mms-1b-bemgen-combined-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2591 - Wer: 0.4134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.7553 | 0.0516 | 100 | 0.8774 | 0.8476 | | 0.5648 | 0.1031 | 200 | 0.3408 | 0.5032 | | 0.4827 | 0.1547 | 300 | 0.3261 | 0.4930 | | 0.4321 | 0.2063 | 400 | 0.3036 | 0.4854 | | 0.4168 | 0.2579 | 500 | 0.2989 | 0.4783 | | 0.3965 | 0.3094 | 600 | 0.2907 | 0.4513 | | 0.4199 | 0.3610 | 700 | 0.2926 | 0.4718 | | 0.3975 | 0.4126 | 800 | 0.2886 | 0.4459 | | 0.3839 | 0.4642 | 900 | 0.2908 | 0.4722 | | 0.3673 | 0.5157 | 1000 | 0.2836 | 0.4445 | | 0.3777 | 0.5673 | 1100 | 0.2784 | 0.4365 | | 0.3764 | 0.6189 | 1200 | 0.2791 | 0.4278 | | 0.3918 | 0.6704 | 1300 | 0.2757 | 0.4251 | | 0.3669 | 0.7220 | 1400 | 0.2721 | 0.4182 | | 0.377 | 0.7736 | 1500 | 0.2728 | 0.4757 | | 0.4174 | 0.8252 | 1600 | 0.2684 | 0.4242 | | 0.3641 | 0.8767 | 1700 | 0.2649 | 0.4195 | | 0.3882 | 0.9283 | 1800 | 0.2647 | 0.4125 | | 0.3861 | 0.9799 | 1900 | 0.2668 | 0.4425 | | 0.3647 | 1.0315 | 2000 | 0.2675 | 0.4246 | | 0.3467 | 1.0830 | 2100 | 0.2629 | 0.4098 | | 0.3579 | 1.1346 | 2200 | 0.2587 | 0.4186 | | 0.3544 | 1.1862 | 2300 | 0.2609 | 0.4127 | | 0.35 | 1.2378 | 2400 | 0.2592 | 0.4062 | | 0.3519 | 1.2893 | 2500 | 0.2591 | 0.4135 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0