--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer metrics: - wer model-index: - name: mms-1b-bemgen-combined-model results: [] --- # mms-1b-bemgen-combined-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2478 - Wer: 0.3899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.8762 | 0.0516 | 100 | 0.9801 | 0.9386 | | 0.5788 | 0.1031 | 200 | 0.3466 | 0.5014 | | 0.4891 | 0.1547 | 300 | 0.3220 | 0.4820 | | 0.4386 | 0.2063 | 400 | 0.3071 | 0.4802 | | 0.4272 | 0.2579 | 500 | 0.3056 | 0.4988 | | 0.3982 | 0.3094 | 600 | 0.2981 | 0.4626 | | 0.425 | 0.3610 | 700 | 0.2977 | 0.4631 | | 0.4036 | 0.4126 | 800 | 0.2897 | 0.4438 | | 0.3903 | 0.4642 | 900 | 0.2878 | 0.4627 | | 0.3758 | 0.5157 | 1000 | 0.2926 | 0.4523 | | 0.3861 | 0.5673 | 1100 | 0.2807 | 0.4410 | | 0.3763 | 0.6189 | 1200 | 0.2790 | 0.4331 | | 0.3984 | 0.6704 | 1300 | 0.2803 | 0.4312 | | 0.373 | 0.7220 | 1400 | 0.2802 | 0.4246 | | 0.3848 | 0.7736 | 1500 | 0.2759 | 0.4752 | | 0.4235 | 0.8252 | 1600 | 0.2738 | 0.4268 | | 0.3704 | 0.8767 | 1700 | 0.2688 | 0.4219 | | 0.3911 | 0.9283 | 1800 | 0.2653 | 0.4201 | | 0.3954 | 0.9799 | 1900 | 0.2697 | 0.4482 | | 0.352 | 1.0315 | 2000 | 0.2654 | 0.4154 | | 0.3808 | 1.0830 | 2100 | 0.2631 | 0.4051 | | 0.3681 | 1.1346 | 2200 | 0.2610 | 0.4219 | | 0.3355 | 1.1862 | 2300 | 0.2608 | 0.4098 | | 0.342 | 1.2378 | 2400 | 0.2602 | 0.4082 | | 0.347 | 1.2893 | 2500 | 0.2628 | 0.4055 | | 0.3409 | 1.3409 | 2600 | 0.2588 | 0.4129 | | 0.3423 | 1.3925 | 2700 | 0.2617 | 0.4192 | | 0.3341 | 1.4440 | 2800 | 0.2578 | 0.4055 | | 0.3425 | 1.4956 | 2900 | 0.2580 | 0.3988 | | 0.337 | 1.5472 | 3000 | 0.2568 | 0.4071 | | 0.3412 | 1.5988 | 3100 | 0.2552 | 0.3993 | | 0.3837 | 1.6503 | 3200 | 0.2622 | 0.4084 | | 0.3372 | 1.7019 | 3300 | 0.2548 | 0.3991 | | 0.3394 | 1.7535 | 3400 | 0.2535 | 0.4061 | | 0.3542 | 1.8051 | 3500 | 0.2512 | 0.3927 | | 0.3368 | 1.8566 | 3600 | 0.2580 | 0.4004 | | 0.3807 | 1.9082 | 3700 | 0.2490 | 0.3975 | | 0.3454 | 1.9598 | 3800 | 0.2514 | 0.4002 | | 0.3456 | 2.0113 | 3900 | 0.2457 | 0.3931 | | 0.3202 | 2.0629 | 4000 | 0.2466 | 0.3916 | | 0.3233 | 2.1145 | 4100 | 0.2495 | 0.3975 | | 0.3052 | 2.1661 | 4200 | 0.2478 | 0.3899 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0