--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - nyagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-nyagen-female-model results: [] --- # mms-1b-nyagen-female-model This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the NYAGEN - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2166 - Wer: 0.2541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 7.8679 | 0.3058 | 100 | 0.9128 | 0.6897 | | 0.627 | 0.6116 | 200 | 0.3265 | 0.4386 | | 0.5004 | 0.9174 | 300 | 0.2951 | 0.4040 | | 0.4611 | 1.2232 | 400 | 0.2758 | 0.3659 | | 0.4455 | 1.5291 | 500 | 0.2667 | 0.3599 | | 0.4142 | 1.8349 | 600 | 0.2601 | 0.3514 | | 0.3706 | 2.1407 | 700 | 0.2521 | 0.3479 | | 0.3867 | 2.4465 | 800 | 0.2461 | 0.3128 | | 0.3537 | 2.7523 | 900 | 0.2449 | 0.3158 | | 0.3821 | 3.0581 | 1000 | 0.2413 | 0.2932 | | 0.3626 | 3.3639 | 1100 | 0.2360 | 0.3083 | | 0.3312 | 3.6697 | 1200 | 0.2336 | 0.2997 | | 0.3322 | 3.9755 | 1300 | 0.2285 | 0.2967 | | 0.3654 | 4.2813 | 1400 | 0.2235 | 0.2852 | | 0.3241 | 4.5872 | 1500 | 0.2198 | 0.2807 | | 0.2908 | 4.8930 | 1600 | 0.2167 | 0.2767 | | 0.3299 | 5.1988 | 1700 | 0.2170 | 0.2747 | | 0.3128 | 5.5046 | 1800 | 0.2147 | 0.2687 | | 0.3094 | 5.8104 | 1900 | 0.2140 | 0.2742 | | 0.309 | 6.1162 | 2000 | 0.2158 | 0.2702 | | 0.3075 | 6.4220 | 2100 | 0.2127 | 0.2652 | | 0.2823 | 6.7278 | 2200 | 0.2155 | 0.2672 | | 0.3062 | 7.0336 | 2300 | 0.2133 | 0.2556 | | 0.3012 | 7.3394 | 2400 | 0.2166 | 0.2541 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0