--- library_name: transformers license: cc-by-nc-4.0 base_model: mms-meta/mms-zeroshot-300m tags: - automatic-speech-recognition - genbed - mms - generated_from_trainer metrics: - wer model-index: - name: mms-zeroshot-300m-genbed-f-model results: [] --- # mms-zeroshot-300m-genbed-f-model This model is a fine-tuned version of [mms-meta/mms-zeroshot-300m](https://huggingface.co/mms-meta/mms-zeroshot-300m) on the GENBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.2100 - Wer: 0.3721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | No log | 0.5479 | 200 | 2.3236 | 1.0 | | No log | 1.0959 | 400 | 0.3331 | 0.5504 | | 2.6731 | 1.6438 | 600 | 0.2969 | 0.5190 | | 2.6731 | 2.1918 | 800 | 0.2806 | 0.5122 | | 0.4193 | 2.7397 | 1000 | 0.2701 | 0.4742 | | 0.4193 | 3.2877 | 1200 | 0.2703 | 0.4770 | | 0.4193 | 3.8356 | 1400 | 0.2574 | 0.4758 | | 0.367 | 4.3836 | 1600 | 0.2487 | 0.4547 | | 0.367 | 4.9315 | 1800 | 0.2472 | 0.4337 | | 0.3377 | 5.4795 | 2000 | 0.2424 | 0.4467 | | 0.3377 | 6.0274 | 2200 | 0.2372 | 0.4274 | | 0.3377 | 6.5753 | 2400 | 0.2366 | 0.4225 | | 0.3282 | 7.1233 | 2600 | 0.2339 | 0.4104 | | 0.3282 | 7.6712 | 2800 | 0.2352 | 0.4193 | | 0.3018 | 8.2192 | 3000 | 0.2249 | 0.4097 | | 0.3018 | 8.7671 | 3200 | 0.2254 | 0.4065 | | 0.3018 | 9.3151 | 3400 | 0.2251 | 0.4021 | | 0.2945 | 9.8630 | 3600 | 0.2248 | 0.3969 | | 0.2945 | 10.4110 | 3800 | 0.2212 | 0.4002 | | 0.2843 | 10.9589 | 4000 | 0.2200 | 0.3920 | | 0.2843 | 11.5068 | 4200 | 0.2183 | 0.3853 | | 0.2843 | 12.0548 | 4400 | 0.2174 | 0.3890 | | 0.2755 | 12.6027 | 4600 | 0.2163 | 0.3955 | | 0.2755 | 13.1507 | 4800 | 0.2197 | 0.3894 | | 0.2699 | 13.6986 | 5000 | 0.2163 | 0.3899 | | 0.2699 | 14.2466 | 5200 | 0.2129 | 0.3769 | | 0.2699 | 14.7945 | 5400 | 0.2114 | 0.3759 | | 0.2568 | 15.3425 | 5600 | 0.2100 | 0.3721 | | 0.2568 | 15.8904 | 5800 | 0.2140 | 0.3670 | | 0.2521 | 16.4384 | 6000 | 0.2149 | 0.3743 | | 0.2521 | 16.9863 | 6200 | 0.2131 | 0.3720 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0