---
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: whisper-medium-bem
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: bembaspeech
      type: bembaspeech
      config: bem
      split: test
    metrics:
    - type: wer
      value: 34.84
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: BembaSpeech
      type: BembaSpeech
      config: en
      split: test
    metrics:
    - type: wer
      value: 31.11
      name: WER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-bem

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3519
- Wer: 33.5877

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6509        | 0.34  | 500  | 0.4872          | 50.9031 |
| 0.5212        | 0.67  | 1000 | 0.3972          | 40.5156 |
| 0.3957        | 1.01  | 1500 | 0.3451          | 36.4793 |
| 0.2956        | 1.34  | 2000 | 0.3421          | 37.3866 |
| 0.2987        | 1.68  | 2500 | 0.3206          | 34.5374 |
| 0.1665        | 2.02  | 3000 | 0.3290          | 34.1135 |
| 0.1557        | 2.35  | 3500 | 0.3334          | 35.0462 |
| 0.1345        | 2.69  | 4000 | 0.3374          | 33.8506 |
| 0.0617        | 3.02  | 4500 | 0.3445          | 33.6216 |
| 0.0661        | 3.36  | 5000 | 0.3519          | 33.5877 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2