--- license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: whisper-medium-bem results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: bembaspeech type: bembaspeech config: bem split: test metrics: - type: wer value: 34.84 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: BembaSpeech type: BembaSpeech config: en split: test metrics: - type: wer value: 31.11 name: WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-bem This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3519 - Wer: 33.5877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6509 | 0.34 | 500 | 0.4872 | 50.9031 | | 0.5212 | 0.67 | 1000 | 0.3972 | 40.5156 | | 0.3957 | 1.01 | 1500 | 0.3451 | 36.4793 | | 0.2956 | 1.34 | 2000 | 0.3421 | 37.3866 | | 0.2987 | 1.68 | 2500 | 0.3206 | 34.5374 | | 0.1665 | 2.02 | 3000 | 0.3290 | 34.1135 | | 0.1557 | 2.35 | 3500 | 0.3334 | 35.0462 | | 0.1345 | 2.69 | 4000 | 0.3374 | 33.8506 | | 0.0617 | 3.02 | 4500 | 0.3445 | 33.6216 | | 0.0661 | 3.36 | 5000 | 0.3519 | 33.5877 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2