--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - automatic-speech-recognition - natbed - generated_from_trainer metrics: - wer model-index: - name: xls-r-1b-bem-natbed-combined-model results: [] --- # xls-r-1b-bem-natbed-combined-model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the NATBED - BEM dataset. It achieves the following results on the evaluation set: - Loss: 0.7026 - Wer: 0.7512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.0296 | 0.2503 | 100 | 2.8071 | 1.0 | | 1.5792 | 0.5006 | 200 | 1.1184 | 0.9645 | | 1.1422 | 0.7509 | 300 | 1.0389 | 0.9606 | | 0.9883 | 1.0013 | 400 | 1.0494 | 0.9989 | | 0.8999 | 1.2516 | 500 | 0.8692 | 0.8683 | | 0.9135 | 1.5019 | 600 | 0.8564 | 0.8430 | | 0.8898 | 1.7522 | 700 | 0.8451 | 0.8522 | | 0.9089 | 2.0025 | 800 | 0.8857 | 0.8485 | | 0.8292 | 2.2528 | 900 | 0.8662 | 0.8580 | | 0.7921 | 2.5031 | 1000 | 0.7964 | 0.7969 | | 0.7983 | 2.7534 | 1100 | 0.7896 | 0.7951 | | 0.7946 | 3.0038 | 1200 | 0.7667 | 0.7947 | | 0.7488 | 3.2541 | 1300 | 0.8180 | 0.8495 | | 0.7428 | 3.5044 | 1400 | 0.7548 | 0.7688 | | 0.7256 | 3.7547 | 1500 | 0.7258 | 0.7596 | | 0.741 | 4.0050 | 1600 | 0.7665 | 0.7718 | | 0.6775 | 4.2553 | 1700 | 0.7922 | 0.7775 | | 0.6795 | 4.5056 | 1800 | 0.7026 | 0.7512 | | 0.683 | 4.7559 | 1900 | 0.7051 | 0.7225 | | 0.6838 | 5.0063 | 2000 | 0.7196 | 0.7503 | | 0.6005 | 5.2566 | 2100 | 0.7032 | 0.7424 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0