File size: 2,347 Bytes
e2b8a4b 7110be8 e2b8a4b 7110be8 e2b8a4b 7110be8 e2b8a4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- automatic-speech-recognition
- natbed
- generated_from_trainer
metrics:
- wer
model-index:
- name: xls-r-1b-bem-natbed-native-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-1b-bem-natbed-native-model
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the NATBED - BEM dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6841
- Wer: 0.7487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.5137 | 0.5618 | 100 | 2.5549 | 1.0 |
| 1.3916 | 1.1236 | 200 | 1.0883 | 0.9840 |
| 0.9962 | 1.6854 | 300 | 0.8153 | 0.8190 |
| 0.8625 | 2.2472 | 400 | 0.8690 | 0.8418 |
| 0.8168 | 2.8090 | 500 | 0.7395 | 0.7390 |
| 0.7197 | 3.3708 | 600 | 0.7596 | 0.7366 |
| 0.6848 | 3.9326 | 700 | 0.7033 | 0.7229 |
| 0.6134 | 4.4944 | 800 | 0.8300 | 0.7662 |
| 0.6303 | 5.0562 | 900 | 0.7365 | 0.7896 |
| 0.5467 | 5.6180 | 1000 | 0.6841 | 0.7487 |
| 0.5194 | 6.1798 | 1100 | 0.7868 | 0.6949 |
| 0.4617 | 6.7416 | 1200 | 0.7563 | 0.7278 |
| 0.4525 | 7.3034 | 1300 | 0.7276 | 0.6730 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|