--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - automatic-speech-recognition - bemgen - generated_from_trainer metrics: - wer model-index: - name: xls-r-1b-bemgen-combined-model results: [] --- # xls-r-1b-bemgen-combined-model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the BEMGEN - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2509 - Wer: 0.3923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.1784 | 100 | 3.4413 | 1.0003 | | No log | 0.3568 | 200 | 2.9149 | 1.0 | | No log | 0.5352 | 300 | 0.7768 | 0.9235 | | No log | 0.7136 | 400 | 0.6057 | 0.9047 | | 5.3372 | 0.8921 | 500 | 0.4317 | 0.6720 | | 5.3372 | 1.0696 | 600 | 0.3997 | 0.6704 | | 5.3372 | 1.2480 | 700 | 0.3611 | 0.6405 | | 5.3372 | 1.4264 | 800 | 0.3441 | 0.5603 | | 5.3372 | 1.6048 | 900 | 0.2945 | 0.4914 | | 0.6459 | 1.7832 | 1000 | 0.3041 | 0.4924 | | 0.6459 | 1.9616 | 1100 | 0.2805 | 0.4681 | | 0.6459 | 2.1392 | 1200 | 0.2774 | 0.5108 | | 0.6459 | 2.3176 | 1300 | 0.2683 | 0.4254 | | 0.6459 | 2.4960 | 1400 | 0.2644 | 0.4382 | | 0.4599 | 2.6744 | 1500 | 0.2446 | 0.4142 | | 0.4599 | 2.8528 | 1600 | 0.2473 | 0.4118 | | 0.4599 | 3.0303 | 1700 | 0.2492 | 0.3961 | | 0.4599 | 3.2087 | 1800 | 0.2467 | 0.4070 | | 0.4599 | 3.3872 | 1900 | 0.2509 | 0.3923 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0