Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1602.09 +/- 34.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32bfd438214b47530628934aef810b3a83d7db00d2cb0f57e377a859ec22ec02
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff16d194dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff16d194e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff16d194ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff16d194f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff16d19a040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff16d19a0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff16d19a160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff16d19a1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff16d19a280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff16d19a310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff16d19a3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff16d19a430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff16d1917e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674747313875741775,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKAsBT8JoY8/S1V3v7iG3z6Uc/w/5wadP/bZqT/KvGM+B7kYv1J3oT57QXw/TfNAv0dwUz6AfE9APsIHwH2QQzxlvUQ+aqj0vaFbBz+BVcY9Z5+LPzFG777T/N69flVfPXvKaT8Fqwg/5TmUPt/GAT/P/7Y/vVdnP0zfYL65ON0/c6MuP/jNhb/vJmA/OjY1v3Q3h74nCtm+76FJvxhWXb5uVlU/2GGwv/g7ir/sPRdAhPAMv7Ihmz6h1qO9RkHVPqWMEb7VfdY+/rUpP2oTqL/PKIy/BasIP+U5lD7fxgE/YdwUP+qwez/x+cK+y18qP7JbyD+ASIw/M6WiP9dMAz7s3CG/5xxOP9Xhoj8l/Za+vwP2Pl/QHUDWz8S/EiOsPl9E/D4cz2E/5y4iP374nL0Il10/Sp+cPflH3r3g+eW8e8ppPwWrCD/lOZQ+38YBP0pdQT/6NIk/39kjv3wJ/D6umeE/UZzSP4llxD89tOs9jZK/vmBdMD+mDQM/okaPv1H2lz+qNQlASyzdvxqjET8GzZM+MqPSvhL2Hz8UtsU8lq19Py78K78dCVM8J8hfPc8ojL8Fqwg/5TmUPt/GAT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA3cHC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARGQLPAAAAAATEPS/AAAAAMJjg70AAAAAElvrPwAAAAAUu9W9AAAAAPvo/D8AAAAAMMDfvAAAAACRT9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEe2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOkjGTwAAAAA9NbnvwAAAADosEA9AAAAAD0t2T8AAAAAP4fzPQAAAADRsNs/AAAAAEUQq70AAAAAxhPlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgxQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDGiqi9AAAAACwt/L8AAAAAlr2PPQAAAACQouM/AAAAAJ1B9T0AAAAAGDfbPwAAAAC9Tw8+AAAAAFcU/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5qCU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKAn7PQAAAAAR3eW/AAAAAIowVz0AAAAAVvj1PwAAAAAnTJa8AAAAAHlF9z8AAAAAZiLpvQAAAAC5z+G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIxpXx8UmD2MAWyUTegDjAF0lEdAqCdt8E3bVXV9lChoBkdAjZlZiExqPGgHTegDaAhHQKgsLyHVPN51fZQoaAZHQJLRWOtGNJhoB03oA2gIR0CoLdipWFN+dX2UKGgGR0CRzlktVaOhaAdN6ANoCEdAqC5YFgUlA3V9lChoBkdAkYnN+1Bt12gHTegDaAhHQKg0MBgeA/d1fZQoaAZHQJMXnAmAskJoB03oA2gIR0CoOMxQizLPdX2UKGgGR0CUs66fapPzaAdN6ANoCEdAqDqHK2a2F3V9lChoBkdAkwZMxbjcVWgHTegDaAhHQKg7EhIvrW11fZQoaAZHQJVEUbrC3w1oB03oA2gIR0CoQOmpVCHAdX2UKGgGR0CWihbiIcioaAdN6ANoCEdAqEamUdJaq3V9lChoBkdAlM7aGHpKSWgHTegDaAhHQKhJMVzIV/N1fZQoaAZHQJTTeWMS9M9oB03oA2gIR0CoSfv8IiTudX2UKGgGR0CTjmbX6InCaAdN6ANoCEdAqFC/+2mYSnV9lChoBkdAjEcOZTho/WgHTegDaAhHQKhVbzzVc2R1fZQoaAZHQJKmxJBgNPRoB03oA2gIR0CoVxg3DNyHdX2UKGgGR0CShw04iosJaAdN6ANoCEdAqFeSAMDwIHV9lChoBkdAk3W9ucc2i2gHTegDaAhHQKhdWJ6Y3Nt1fZQoaAZHQJa01Dtw71ZoB03oA2gIR0CoYdpNCZ4OdX2UKGgGR0CXvogkka/AaAdN6ANoCEdAqGOGlTFVDXV9lChoBkdAmHXvOUt7KWgHTegDaAhHQKhkByyUs4F1fZQoaAZHQJXA+EBbOeJoB03oA2gIR0Coacc4HX2/dX2UKGgGR0CQ68M4LkS3aAdN6ANoCEdAqG5H20zCUHV9lChoBkdAlaxD8HfMwGgHTegDaAhHQKhv7wjMV1x1fZQoaAZHQJSQW5QP7N1oB03oA2gIR0CocGu0svqUdX2UKGgGR0CUj7W1twaSaAdN6ANoCEdAqHYQ2AG0NXV9lChoBkdAlXP0RSP2f2gHTegDaAhHQKh6o5ksjFB1fZQoaAZHQJXAp4HHFP1oB03oA2gIR0CofFOW8h9tdX2UKGgGR0CW9XQSi/O/aAdN6ANoCEdAqHzStDD0lXV9lChoBkdAlciDIvJzUGgHTegDaAhHQKiCdTAnDzl1fZQoaAZHQJUUxvFWGRFoB03oA2gIR0CohxBZQpF1dX2UKGgGR0CVuv7PY4ACaAdN6ANoCEdAqIi7HXEqD3V9lChoBkdAl89RE0BOpWgHTegDaAhHQKiJQrmQr+Z1fZQoaAZHQJNPbHzYmLNoB03oA2gIR0Cojw1WS2YwdX2UKGgGR0CXVBDzRQaaaAdN6ANoCEdAqJOxNTLntHV9lChoBkdAlkBDqB3A22gHTegDaAhHQKiVat9x6v91fZQoaAZHQJTp9LqUu+RoB03oA2gIR0ColerjxTbWdX2UKGgGR0CYpc+uNgjRaAdN6ANoCEdAqJu4Q8OkL3V9lChoBkdAl6R87U5MlGgHTegDaAhHQKigQUi6g/V1fZQoaAZHQJiqRiZv1lJoB03oA2gIR0CooesSTQmedX2UKGgGR0CPx5P/JeVtaAdN6ANoCEdAqKJmh7E5yXV9lChoBkdAl4/8nuy/sWgHTegDaAhHQKioEdyT6i11fZQoaAZHQJf7gSuhbnpoB03oA2gIR0CorKCbUgB+dX2UKGgGR0CZMmDe0ojOaAdN6ANoCEdAqK5V5Sm65HV9lChoBkdAmctmapgkT2gHTegDaAhHQKiu2Z8a4tp1fZQoaAZHQJhOYd8zAN5oB03oA2gIR0CotJoVuaWpdX2UKGgGR0CZX9Nj9XLeaAdN6ANoCEdAqLk3vYvnKXV9lChoBkdAljHOUY8+zWgHTegDaAhHQKi65TGYKIB1fZQoaAZHQJdBYGwA2htoB03oA2gIR0Cou2H3lCC0dX2UKGgGR0CYpPTBZZB+aAdN6ANoCEdAqMEarNnoPnV9lChoBkdAmDhfIKc/dWgHTegDaAhHQKjFqw9q1w51fZQoaAZHQJfko63iJfpoB03oA2gIR0Cox2Uv4/NadX2UKGgGR0CXW9oCuEElaAdN6ANoCEdAqMfhvxYq5XV9lChoBkdAlM+W/rSmZWgHTegDaAhHQKjNnhmXgLt1fZQoaAZHQJNkrP1L8JloB03oA2gIR0Co0jcnVoYfdX2UKGgGR0CSwiTfixVyaAdN6ANoCEdAqNPjs6aLGnV9lChoBkdAldLvOhTOxGgHTegDaAhHQKjUaApazNV1fZQoaAZHQJBhyGwiaApoB03oA2gIR0Co2ivczqKQdX2UKGgGR0CW2tz4UN8WaAdN6ANoCEdAqN6tB4Uvf3V9lChoBkdAlp28rNGEwmgHTegDaAhHQKjgYZrpJPJ1fZQoaAZHQJJL9LxqfvpoB03oA2gIR0Co4OUXxe9jdX2UKGgGR0CTcXOdGy5aaAdN6ANoCEdAqOaeiQDFInV9lChoBkdAlWN7IcR15mgHTegDaAhHQKjrLqnFYMh1fZQoaAZHQJTAhA9mpVFoB03oA2gIR0Co7NJ0fYBedX2UKGgGR0CTh6ustCiRaAdN6ANoCEdAqO1SQkona3V9lChoBkdAlOFqkuYhMmgHTegDaAhHQKjzBlV94NZ1fZQoaAZHQJVdCSq2jO9oB03oA2gIR0Co94zisGPgdX2UKGgGR0CXQYQarFOxaAdN6ANoCEdAqPk6kCV8kXV9lChoBkdAmD6Qmqo60mgHTegDaAhHQKj5yJGe+VV1fZQoaAZHQJfarFOwgT1oB03oA2gIR0Co/5/Abhm5dX2UKGgGR0CYoiTcZccEaAdN6ANoCEdAqQQlv863iXV9lChoBkdAmZ1JKnNxEWgHTegDaAhHQKkFy2m51/51fZQoaAZHQJehXIhhYvFoB03oA2gIR0CpBkwK0D2bdX2UKGgGR0CYVNJxNqQBaAdN6ANoCEdAqQwKrcTJyXV9lChoBkdAmSLtzCDVY2gHTegDaAhHQKkQrxtpEhJ1fZQoaAZHQJf9sK1G9YhoB03oA2gIR0CpEmtwrDqGdX2UKGgGR0CY1aI7Njb0aAdN6ANoCEdAqRLvQSi/PHV9lChoBkdAl1Yo5PuXu2gHTegDaAhHQKkYqkGiYb91fZQoaAZHQJUkSkM1CPZoB03oA2gIR0CpHTTKT0QLdX2UKGgGR0CUPI6kqMFVaAdN6ANoCEdAqR7iHsTnJXV9lChoBkdAlpync1wYL2gHTegDaAhHQKkfXoTPBzp1fZQoaAZHQJZwck3S8apoB03oA2gIR0CpJSfx2B8QdX2UKGgGR0CVA6qQiiZfaAdN6ANoCEdAqSm8MNMGo3V9lChoBkdAlm6uEh7mdWgHTegDaAhHQKkre1LrX191fZQoaAZHQJWet7XxvvVoB03oA2gIR0CpK/eZgG8mdX2UKGgGR0CVRwLSeAd5aAdN6ANoCEdAqTHCWE9MbnV9lChoBkdAlCsDbSJCSmgHTegDaAhHQKk2U2n889x1fZQoaAZHQJZ4Ehouf29oB03oA2gIR0CpN/k74i5edX2UKGgGR0CXCJggX/HYaAdN6ANoCEdAqTiCILw4KnV9lChoBkdAmCAsv/R3NmgHTegDaAhHQKk+Upobn5l1fZQoaAZHQJgjHY7JW/9oB03oA2gIR0CpQucuanaWdX2UKGgGR0CX+50q6OHWaAdN6ANoCEdAqUSXrMTviXV9lChoBkdAmJTf7iyY5WgHTegDaAhHQKlFHvkzXSV1fZQoaAZHQJbLGuA7PppoB03oA2gIR0CpStD4YaYNdX2UKGgGR0CYsIpjMFEBaAdN6ANoCEdAqU9fMdLg43V9lChoBkdAl7ABdpqREGgHTegDaAhHQKlQ/40uUUx1fZQoaAZHQJd6vIU8FINoB03oA2gIR0CpUX1AZ88cdX2UKGgGR0CWuFlkYoAoaAdN6ANoCEdAqVc86mwaBXV9lChoBkdAlWTPTLGJemgHTegDaAhHQKlbwIcinpB1fZQoaAZHQJYfJtP557hoB03oA2gIR0CpXXDaGpMpdX2UKGgGR0CVLdidat9yaAdN6ANoCEdAqV3x+QU5/HVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b06825fce5af194cfc3b91df1c1b3e06688c879fa7f2da7126d064682ec92b1f
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3cf16db129d97811bb2d5155a010a52a54b9239c85bb63e995244a769f46099
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff16d194dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff16d194e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff16d194ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff16d194f70>", "_build": "<function ActorCriticPolicy._build at 0x7ff16d19a040>", "forward": "<function ActorCriticPolicy.forward at 0x7ff16d19a0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff16d19a160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff16d19a1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff16d19a280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff16d19a310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff16d19a3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff16d19a430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff16d1917e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674747313875741775, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKAsBT8JoY8/S1V3v7iG3z6Uc/w/5wadP/bZqT/KvGM+B7kYv1J3oT57QXw/TfNAv0dwUz6AfE9APsIHwH2QQzxlvUQ+aqj0vaFbBz+BVcY9Z5+LPzFG777T/N69flVfPXvKaT8Fqwg/5TmUPt/GAT/P/7Y/vVdnP0zfYL65ON0/c6MuP/jNhb/vJmA/OjY1v3Q3h74nCtm+76FJvxhWXb5uVlU/2GGwv/g7ir/sPRdAhPAMv7Ihmz6h1qO9RkHVPqWMEb7VfdY+/rUpP2oTqL/PKIy/BasIP+U5lD7fxgE/YdwUP+qwez/x+cK+y18qP7JbyD+ASIw/M6WiP9dMAz7s3CG/5xxOP9Xhoj8l/Za+vwP2Pl/QHUDWz8S/EiOsPl9E/D4cz2E/5y4iP374nL0Il10/Sp+cPflH3r3g+eW8e8ppPwWrCD/lOZQ+38YBP0pdQT/6NIk/39kjv3wJ/D6umeE/UZzSP4llxD89tOs9jZK/vmBdMD+mDQM/okaPv1H2lz+qNQlASyzdvxqjET8GzZM+MqPSvhL2Hz8UtsU8lq19Py78K78dCVM8J8hfPc8ojL8Fqwg/5TmUPt/GAT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA3cHC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARGQLPAAAAAATEPS/AAAAAMJjg70AAAAAElvrPwAAAAAUu9W9AAAAAPvo/D8AAAAAMMDfvAAAAACRT9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEe2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOkjGTwAAAAA9NbnvwAAAADosEA9AAAAAD0t2T8AAAAAP4fzPQAAAADRsNs/AAAAAEUQq70AAAAAxhPlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgxQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDGiqi9AAAAACwt/L8AAAAAlr2PPQAAAACQouM/AAAAAJ1B9T0AAAAAGDfbPwAAAAC9Tw8+AAAAAFcU/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD5qCU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKAn7PQAAAAAR3eW/AAAAAIowVz0AAAAAVvj1PwAAAAAnTJa8AAAAAHlF9z8AAAAAZiLpvQAAAAC5z+G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIxpXx8UmD2MAWyUTegDjAF0lEdAqCdt8E3bVXV9lChoBkdAjZlZiExqPGgHTegDaAhHQKgsLyHVPN51fZQoaAZHQJLRWOtGNJhoB03oA2gIR0CoLdipWFN+dX2UKGgGR0CRzlktVaOhaAdN6ANoCEdAqC5YFgUlA3V9lChoBkdAkYnN+1Bt12gHTegDaAhHQKg0MBgeA/d1fZQoaAZHQJMXnAmAskJoB03oA2gIR0CoOMxQizLPdX2UKGgGR0CUs66fapPzaAdN6ANoCEdAqDqHK2a2F3V9lChoBkdAkwZMxbjcVWgHTegDaAhHQKg7EhIvrW11fZQoaAZHQJVEUbrC3w1oB03oA2gIR0CoQOmpVCHAdX2UKGgGR0CWihbiIcioaAdN6ANoCEdAqEamUdJaq3V9lChoBkdAlM7aGHpKSWgHTegDaAhHQKhJMVzIV/N1fZQoaAZHQJTTeWMS9M9oB03oA2gIR0CoSfv8IiTudX2UKGgGR0CTjmbX6InCaAdN6ANoCEdAqFC/+2mYSnV9lChoBkdAjEcOZTho/WgHTegDaAhHQKhVbzzVc2R1fZQoaAZHQJKmxJBgNPRoB03oA2gIR0CoVxg3DNyHdX2UKGgGR0CShw04iosJaAdN6ANoCEdAqFeSAMDwIHV9lChoBkdAk3W9ucc2i2gHTegDaAhHQKhdWJ6Y3Nt1fZQoaAZHQJa01Dtw71ZoB03oA2gIR0CoYdpNCZ4OdX2UKGgGR0CXvogkka/AaAdN6ANoCEdAqGOGlTFVDXV9lChoBkdAmHXvOUt7KWgHTegDaAhHQKhkByyUs4F1fZQoaAZHQJXA+EBbOeJoB03oA2gIR0Coacc4HX2/dX2UKGgGR0CQ68M4LkS3aAdN6ANoCEdAqG5H20zCUHV9lChoBkdAlaxD8HfMwGgHTegDaAhHQKhv7wjMV1x1fZQoaAZHQJSQW5QP7N1oB03oA2gIR0CocGu0svqUdX2UKGgGR0CUj7W1twaSaAdN6ANoCEdAqHYQ2AG0NXV9lChoBkdAlXP0RSP2f2gHTegDaAhHQKh6o5ksjFB1fZQoaAZHQJXAp4HHFP1oB03oA2gIR0CofFOW8h9tdX2UKGgGR0CW9XQSi/O/aAdN6ANoCEdAqHzStDD0lXV9lChoBkdAlciDIvJzUGgHTegDaAhHQKiCdTAnDzl1fZQoaAZHQJUUxvFWGRFoB03oA2gIR0CohxBZQpF1dX2UKGgGR0CVuv7PY4ACaAdN6ANoCEdAqIi7HXEqD3V9lChoBkdAl89RE0BOpWgHTegDaAhHQKiJQrmQr+Z1fZQoaAZHQJNPbHzYmLNoB03oA2gIR0Cojw1WS2YwdX2UKGgGR0CXVBDzRQaaaAdN6ANoCEdAqJOxNTLntHV9lChoBkdAlkBDqB3A22gHTegDaAhHQKiVat9x6v91fZQoaAZHQJTp9LqUu+RoB03oA2gIR0ColerjxTbWdX2UKGgGR0CYpc+uNgjRaAdN6ANoCEdAqJu4Q8OkL3V9lChoBkdAl6R87U5MlGgHTegDaAhHQKigQUi6g/V1fZQoaAZHQJiqRiZv1lJoB03oA2gIR0CooesSTQmedX2UKGgGR0CPx5P/JeVtaAdN6ANoCEdAqKJmh7E5yXV9lChoBkdAl4/8nuy/sWgHTegDaAhHQKioEdyT6i11fZQoaAZHQJf7gSuhbnpoB03oA2gIR0CorKCbUgB+dX2UKGgGR0CZMmDe0ojOaAdN6ANoCEdAqK5V5Sm65HV9lChoBkdAmctmapgkT2gHTegDaAhHQKiu2Z8a4tp1fZQoaAZHQJhOYd8zAN5oB03oA2gIR0CotJoVuaWpdX2UKGgGR0CZX9Nj9XLeaAdN6ANoCEdAqLk3vYvnKXV9lChoBkdAljHOUY8+zWgHTegDaAhHQKi65TGYKIB1fZQoaAZHQJdBYGwA2htoB03oA2gIR0Cou2H3lCC0dX2UKGgGR0CYpPTBZZB+aAdN6ANoCEdAqMEarNnoPnV9lChoBkdAmDhfIKc/dWgHTegDaAhHQKjFqw9q1w51fZQoaAZHQJfko63iJfpoB03oA2gIR0Cox2Uv4/NadX2UKGgGR0CXW9oCuEElaAdN6ANoCEdAqMfhvxYq5XV9lChoBkdAlM+W/rSmZWgHTegDaAhHQKjNnhmXgLt1fZQoaAZHQJNkrP1L8JloB03oA2gIR0Co0jcnVoYfdX2UKGgGR0CSwiTfixVyaAdN6ANoCEdAqNPjs6aLGnV9lChoBkdAldLvOhTOxGgHTegDaAhHQKjUaApazNV1fZQoaAZHQJBhyGwiaApoB03oA2gIR0Co2ivczqKQdX2UKGgGR0CW2tz4UN8WaAdN6ANoCEdAqN6tB4Uvf3V9lChoBkdAlp28rNGEwmgHTegDaAhHQKjgYZrpJPJ1fZQoaAZHQJJL9LxqfvpoB03oA2gIR0Co4OUXxe9jdX2UKGgGR0CTcXOdGy5aaAdN6ANoCEdAqOaeiQDFInV9lChoBkdAlWN7IcR15mgHTegDaAhHQKjrLqnFYMh1fZQoaAZHQJTAhA9mpVFoB03oA2gIR0Co7NJ0fYBedX2UKGgGR0CTh6ustCiRaAdN6ANoCEdAqO1SQkona3V9lChoBkdAlOFqkuYhMmgHTegDaAhHQKjzBlV94NZ1fZQoaAZHQJVdCSq2jO9oB03oA2gIR0Co94zisGPgdX2UKGgGR0CXQYQarFOxaAdN6ANoCEdAqPk6kCV8kXV9lChoBkdAmD6Qmqo60mgHTegDaAhHQKj5yJGe+VV1fZQoaAZHQJfarFOwgT1oB03oA2gIR0Co/5/Abhm5dX2UKGgGR0CYoiTcZccEaAdN6ANoCEdAqQQlv863iXV9lChoBkdAmZ1JKnNxEWgHTegDaAhHQKkFy2m51/51fZQoaAZHQJehXIhhYvFoB03oA2gIR0CpBkwK0D2bdX2UKGgGR0CYVNJxNqQBaAdN6ANoCEdAqQwKrcTJyXV9lChoBkdAmSLtzCDVY2gHTegDaAhHQKkQrxtpEhJ1fZQoaAZHQJf9sK1G9YhoB03oA2gIR0CpEmtwrDqGdX2UKGgGR0CY1aI7Njb0aAdN6ANoCEdAqRLvQSi/PHV9lChoBkdAl1Yo5PuXu2gHTegDaAhHQKkYqkGiYb91fZQoaAZHQJUkSkM1CPZoB03oA2gIR0CpHTTKT0QLdX2UKGgGR0CUPI6kqMFVaAdN6ANoCEdAqR7iHsTnJXV9lChoBkdAlpync1wYL2gHTegDaAhHQKkfXoTPBzp1fZQoaAZHQJZwck3S8apoB03oA2gIR0CpJSfx2B8QdX2UKGgGR0CVA6qQiiZfaAdN6ANoCEdAqSm8MNMGo3V9lChoBkdAlm6uEh7mdWgHTegDaAhHQKkre1LrX191fZQoaAZHQJWet7XxvvVoB03oA2gIR0CpK/eZgG8mdX2UKGgGR0CVRwLSeAd5aAdN6ANoCEdAqTHCWE9MbnV9lChoBkdAlCsDbSJCSmgHTegDaAhHQKk2U2n889x1fZQoaAZHQJZ4Ehouf29oB03oA2gIR0CpN/k74i5edX2UKGgGR0CXCJggX/HYaAdN6ANoCEdAqTiCILw4KnV9lChoBkdAmCAsv/R3NmgHTegDaAhHQKk+Upobn5l1fZQoaAZHQJgjHY7JW/9oB03oA2gIR0CpQucuanaWdX2UKGgGR0CX+50q6OHWaAdN6ANoCEdAqUSXrMTviXV9lChoBkdAmJTf7iyY5WgHTegDaAhHQKlFHvkzXSV1fZQoaAZHQJbLGuA7PppoB03oA2gIR0CpStD4YaYNdX2UKGgGR0CYsIpjMFEBaAdN6ANoCEdAqU9fMdLg43V9lChoBkdAl7ABdpqREGgHTegDaAhHQKlQ/40uUUx1fZQoaAZHQJd6vIU8FINoB03oA2gIR0CpUX1AZ88cdX2UKGgGR0CWuFlkYoAoaAdN6ANoCEdAqVc86mwaBXV9lChoBkdAlWTPTLGJemgHTegDaAhHQKlbwIcinpB1fZQoaAZHQJYfJtP557hoB03oA2gIR0CpXXDaGpMpdX2UKGgGR0CVLdidat9yaAdN6ANoCEdAqV3x+QU5/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:541ad78a4acc0b84d4d14c3bd2d5de8eb1653f225fe2f5425a0fdd404a2dfd7f
|
3 |
+
size 1171610
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1602.090315490961, "std_reward": 34.74678975461471, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T16:32:21.292200"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fc7f37f83ae35e75a79fa17466921a8c82c8d219e34d24ff94adac97507b542
|
3 |
+
size 2136
|