css919 commited on
Commit
3ac0ab9
·
1 Parent(s): cb71832

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 278.37 +/- 16.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf0a6b6700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf0a6b6790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf0a6b6820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf0a6b68b0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf0a6b6940>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf0a6b69d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf0a6b6a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf0a6b6af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf0a6b6b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf0a6b6c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf0a6b6ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf0a6b6d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf0a6b45a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673678913502860568, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJomr73hVjM+VsofPRe8eL4JMIy8hcr/OwAAAAAAAAAAM6HbvfgYtD+FIQa/LxV+vj3PRL4686O+AAAAAAAAAADNgk+89lwQuhfVyzYef2AyQni5OvB27bUAAIA/AACAP7NaEL0puGq69hKKO1aoNDhXqTq6Eh3guAAAgD8AAIA/syrSvY8STLoG6w45xB2fNGeaFzu0xSS4AACAPwAAgD8zDgW+YIaZPjynJT7NtG++GGc2vVAo8jwAAAAAAAAAAABQnTzOMgc/0laDPVWlnb5io0w9RteZPAAAAAAAAAAAMxrhPK41nLqyiuwzBt18L70Rw7qwuKSzAACAPwAAgD8AcBA7j/ZDulVTTjt66qw3AjHUuiJuHLoAAIA/AACAPzOmlbz2HEG6LfGHuFWXIrOOSRI6sj6cNwAAgD8AAIA/M62fvVyHJLoTR6W7oA7lN1bcnzuWXAS3AACAPwAAgD+m/+W9SLGWulaRDzsABIG0IvwJO1KDJboAAIA/AAAAAE1UWb3h1Jq6ygHRtZqWfbD2Giu5vqv1NAAAgD8AAIA/mh/fPI+Kf7povOC6GnrxNFmsJrulFAA6AACAPwAAgD8AYOy9rv/KPvXAmj60fZ6+N18vPtbbM70AAAAAAAAAAACgerxIl56610UWuMCMD7PhiGo6kvIsNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuAGfH0YDZECUhpRSlIwBbJRN6AOMAXSUR0CPd0lGgBcSdX2UKGgGaAloD0MIiIBDqFJVZ0CUhpRSlGgVTegDaBZHQI94Nrj5sTF1fZQoaAZoCWgPQwicUl4roZRhQJSGlFKUaBVN6ANoFkdAj3kAGSpzcXV9lChoBmgJaA9DCO5brRMXtGhAlIaUUpRoFU3oA2gWR0CPerHrhR64dX2UKGgGaAloD0MISMSUSCKvYECUhpRSlGgVTegDaBZHQI992qR2bG51fZQoaAZoCWgPQwjzjeie9VljQJSGlFKUaBVN6ANoFkdAj3/PX9R77nV9lChoBmgJaA9DCHizBu+rDWBAlIaUUpRoFU3oA2gWR0CPgNH80k4WdX2UKGgGaAloD0MI09heC/qNZUCUhpRSlGgVTegDaBZHQI+GlnIyTIN1fZQoaAZoCWgPQwj1aRX9IQ1nQJSGlFKUaBVN6ANoFkdAj4rad1+y7nV9lChoBmgJaA9DCOzBpPj4rGhAlIaUUpRoFU3oA2gWR0CPkKzkZJkHdX2UKGgGaAloD0MItTLhl/p1Z0CUhpRSlGgVTegDaBZHQI+VS2x6fJ51fZQoaAZoCWgPQwhqaW6FsOFjQJSGlFKUaBVN6ANoFkdAj6C1mapgkXV9lChoBmgJaA9DCDM1Cd6Qi19AlIaUUpRoFU3oA2gWR0CP2rOQhfShdX2UKGgGaAloD0MIx4LCoMxgY0CUhpRSlGgVTegDaBZHQI/hE0WM0gt1fZQoaAZoCWgPQwj76qpArcRkQJSGlFKUaBVN6ANoFkdAj+KqmKqGUXV9lChoBmgJaA9DCGhZ948FaWVAlIaUUpRoFU3oA2gWR0CP/FIqbz9TdX2UKGgGaAloD0MI4PYEiW1ScUCUhpRSlGgVTZoCaBZHQJAAmvmozep1fZQoaAZoCWgPQwh/+zpwTmJoQJSGlFKUaBVN6ANoFkdAkAqluejEenV9lChoBmgJaA9DCD4D6s2osWVAlIaUUpRoFU3oA2gWR0CQCxtv4ubrdX2UKGgGaAloD0MIINEEili6YkCUhpRSlGgVTegDaBZHQJALgg/1QIl1fZQoaAZoCWgPQwjnw7MEmX1kQJSGlFKUaBVN6ANoFkdAkAxN8JD3NHV9lChoBmgJaA9DCMpRgCiYSWBAlIaUUpRoFU3oA2gWR0CQDd0TDfm+dX2UKGgGaAloD0MI3LsGfWl3Y0CUhpRSlGgVTegDaBZHQJAOxgYxcml1fZQoaAZoCWgPQwjV0AZggw5jQJSGlFKUaBVN6ANoFkdAkA8+QU5+6XV9lChoBmgJaA9DCLaeIRwznnBAlIaUUpRoFU0SA2gWR0CQEg1bqyGBdX2UKGgGaAloD0MIBP9byQ4HZUCUhpRSlGgVTegDaBZHQJAUT9hqj8F1fZQoaAZoCWgPQwgwLH++rTRvQJSGlFKUaBVNtANoFkdAkBRfUF0PpnV9lChoBmgJaA9DCBFTIole+VRAlIaUUpRoFUuwaBZHQJAWjPeHi3p1fZQoaAZoCWgPQwgoDMo0mkthQJSGlFKUaBVN6ANoFkdAkBevv4M4LnV9lChoBmgJaA9DCFCOAkQBg3BAlIaUUpRoFU0zAmgWR0CQGfLOzIFNdX2UKGgGaAloD0MIih74GKyQSECUhpRSlGgVS8FoFkdAkBx+IEbHZXV9lChoBmgJaA9DCKJCdXNxA2lAlIaUUpRoFU3oA2gWR0CQNLYG+sYEdX2UKGgGaAloD0MI5PVgUnwTZ0CUhpRSlGgVTegDaBZHQJA3INsnAqN1fZQoaAZoCWgPQwifjscMVPZgQJSGlFKUaBVN6ANoFkdAkDe/ChvitXV9lChoBmgJaA9DCGgkQiNYjm9AlIaUUpRoFU0GA2gWR0CQQaAO8TSLdX2UKGgGaAloD0MIpUqUvaV7YECUhpRSlGgVTegDaBZHQJBENIK+i8F1fZQoaAZoCWgPQwj2e2KdKj1jQJSGlFKUaBVN6ANoFkdAkEzL5ylvZXV9lChoBmgJaA9DCKGd0yxQK2FAlIaUUpRoFU3oA2gWR0CQTR0Bfa6CdX2UKGgGaAloD0MI2o6pu7IgZECUhpRSlGgVTegDaBZHQJBNzz5GjKx1fZQoaAZoCWgPQwjeWFAYlPpiQJSGlFKUaBVN6ANoFkdAkE8h9Tgl4XV9lChoBmgJaA9DCB+g+3Lml2ZAlIaUUpRoFU3oA2gWR0CQT/GHpKSQdX2UKGgGaAloD0MIAd9t3jjAZkCUhpRSlGgVTegDaBZHQJBS+OLiuMd1fZQoaAZoCWgPQwjHhJhLqmxoQJSGlFKUaBVN6ANoFkdAkFUT7Q9idHV9lChoBmgJaA9DCGeY2lIHWUdAlIaUUpRoFUvRaBZHQJBWIKpkwvh1fZQoaAZoCWgPQwgAVdy4xTlfQJSGlFKUaBVN6ANoFkdAkFdvAbhm5HV9lChoBmgJaA9DCN0ostbQZ2dAlIaUUpRoFU3oA2gWR0CQWI3Zf2K3dX2UKGgGaAloD0MIZf88DRiOYECUhpRSlGgVTegDaBZHQJBa0BDG96F1fZQoaAZoCWgPQwgC1T+IZNJwQJSGlFKUaBVNQAFoFkdAkFxR3JPqLXV9lChoBmgJaA9DCJc8npafgWRAlIaUUpRoFU3oA2gWR0CQXV6iCaqkdX2UKGgGaAloD0MIycwFLg+UbECUhpRSlGgVTdADaBZHQJB0Sylenht1fZQoaAZoCWgPQwjtYwW/jdVmQJSGlFKUaBVN6ANoFkdAkHgsYht+C3V9lChoBmgJaA9DCAhagSGrSGNAlIaUUpRoFU3oA2gWR0CQeNtJ4B3idX2UKGgGaAloD0MIXio25nVbcUCUhpRSlGgVTfgCaBZHQJCDHYkE9uB1fZQoaAZoCWgPQwgPf03WqC5oQJSGlFKUaBVN6ANoFkdAkIN2lEZzgnV9lChoBmgJaA9DCNkFg2vuEG1AlIaUUpRoFU2BAmgWR0CQhRrIHTqjdX2UKGgGaAloD0MI00z3Omn0cECUhpRSlGgVTSECaBZHQJCFzJ2dNFl1fZQoaAZoCWgPQwgX1SKiGI5hQJSGlFKUaBVN6ANoFkdAkIZpvHcUNHV9lChoBmgJaA9DCNPaNLZX7mxAlIaUUpRoFU1XA2gWR0CQiFh5gPVedX2UKGgGaAloD0MIWaSJd4CHbUCUhpRSlGgVTeYBaBZHQJCJWjUNKAd1fZQoaAZoCWgPQwhyUpj3uLpvQJSGlFKUaBVNKgNoFkdAkIl09yLhrHV9lChoBmgJaA9DCP6arFHPUXFAlIaUUpRoFU0MAWgWR0CQj7MUAT7EdX2UKGgGaAloD0MIFvvL7kkpbUCUhpRSlGgVTTgDaBZHQJCQqX0Gu9x1fZQoaAZoCWgPQwioctpTcolRQJSGlFKUaBVLv2gWR0CQkYP4EfT1dX2UKGgGaAloD0MIBoAqbpwLc0CUhpRSlGgVTSUBaBZHQJCWg2zfJmx1fZQoaAZoCWgPQwjysiYWePFiQJSGlFKUaBVN6ANoFkdAkJfE+1SflXV9lChoBmgJaA9DCCaqtwY2k2dAlIaUUpRoFU3oA2gWR0CQm4qwhW5pdX2UKGgGaAloD0MIpfj4hGwpcUCUhpRSlGgVTfIBaBZHQJCbrcer+5x1fZQoaAZoCWgPQwiGrG71nCJhQJSGlFKUaBVN6ANoFkdAkJ20rTYukHV9lChoBmgJaA9DCD1H5LuUAmVAlIaUUpRoFU3oA2gWR0CQnyBXjlxPdX2UKGgGaAloD0MIA7LXu78GZECUhpRSlGgVTegDaBZHQJCkEESuhbp1fZQoaAZoCWgPQwivJ7ouvJFxQJSGlFKUaBVNowNoFkdAkKRcx0uDjHV9lChoBmgJaA9DCN9TOe2pim9AlIaUUpRoFU3dAWgWR0CQuJOFg2IgdX2UKGgGaAloD0MIsVBrmvf/bUCUhpRSlGgVTbICaBZHQJC4k+kgwGp1fZQoaAZoCWgPQwiFJ/T603ZxQJSGlFKUaBVNpgJoFkdAkLnLQokRjHV9lChoBmgJaA9DCEcBomDGzW9AlIaUUpRoFU3rAmgWR0CQumoicG1QdX2UKGgGaAloD0MIT6xT5fs2ZECUhpRSlGgVTegDaBZHQJC6+BMBZIR1fZQoaAZoCWgPQwg5X+y9eMxwQJSGlFKUaBVN+gFoFkdAkLtYg7o0RHV9lChoBmgJaA9DCN4E3zT9A3BAlIaUUpRoFUv4aBZHQJC7qiblRxd1fZQoaAZoCWgPQwgoucMmMn9RQJSGlFKUaBVLpmgWR0CQvZaGHpKSdX2UKGgGaAloD0MItksbDkvnSECUhpRSlGgVS85oFkdAkL9Jftx+8XV9lChoBmgJaA9DCIm1+BSAJm5AlIaUUpRoFU2AAmgWR0CQv1xtYSxrdX2UKGgGaAloD0MIPzvgumIxUkCUhpRSlGgVS69oFkdAkMAVuBMBZXV9lChoBmgJaA9DCHaKVYMwBW5AlIaUUpRoFU10AWgWR0CQwU+zMRpUdX2UKGgGaAloD0MIezGUE+3WYkCUhpRSlGgVTegDaBZHQJDBwi9qUNd1fZQoaAZoCWgPQwgepn1zf59RQJSGlFKUaBVLtWgWR0CQwdPhhpg1dX2UKGgGaAloD0MIl445z5gFc0CUhpRSlGgVTSABaBZHQJDDKgbp/w11fZQoaAZoCWgPQwjJrx9igxk3QJSGlFKUaBVLwWgWR0CQxvU+cH4XdX2UKGgGaAloD0MIVMcqpecNbkCUhpRSlGgVTcMCaBZHQJDIF10T1011fZQoaAZoCWgPQwiY+Q5+IhhwQJSGlFKUaBVNsQJoFkdAkMsdtuUD+3V9lChoBmgJaA9DCEMB28GIJm5AlIaUUpRoFU1NA2gWR0CQ0y/RE4NrdX2UKGgGaAloD0MIgzP4+8Vtb0CUhpRSlGgVTZUBaBZHQJDT2704BFN1fZQoaAZoCWgPQwhfQgWHF11mQJSGlFKUaBVN6ANoFkdAkNUrB42S+3V9lChoBmgJaA9DCEXVr3Q+S25AlIaUUpRoFU0PAmgWR0CQ1z4BV+7UdX2UKGgGaAloD0MIbJIf8atTcUCUhpRSlGgVTfEBaBZHQJDY52ovSMN1fZQoaAZoCWgPQwgFwk6xavJwQJSGlFKUaBVN0gFoFkdAkNkvCQ9zO3V9lChoBmgJaA9DCDrObcK9/kZAlIaUUpRoFUu+aBZHQJDd4aLn9vV1fZQoaAZoCWgPQwjtm/urh7ZwQJSGlFKUaBVNPQNoFkdAkN9JGFzuGHV9lChoBmgJaA9DCO0rD9LTLXFAlIaUUpRoFU23AmgWR0CQ38iQDFIedX2UKGgGaAloD0MIeedQhiqBcECUhpRSlGgVTQQCaBZHQJDgncWTHKh1fZQoaAZoCWgPQwhZxLDDmP9oQJSGlFKUaBVN6ANoFkdAkOQvIGQjlnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c41bb3561421a3bc77b91d9ea1f2a5d15852e039afce8faf308e00e142c0bf27
3
+ size 147412
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf0a6b6700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf0a6b6790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf0a6b6820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf0a6b68b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdf0a6b6940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdf0a6b69d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf0a6b6a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf0a6b6af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdf0a6b6b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf0a6b6c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf0a6b6ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf0a6b6d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fdf0a6b45a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673678913502860568,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJomr73hVjM+VsofPRe8eL4JMIy8hcr/OwAAAAAAAAAAM6HbvfgYtD+FIQa/LxV+vj3PRL4686O+AAAAAAAAAADNgk+89lwQuhfVyzYef2AyQni5OvB27bUAAIA/AACAP7NaEL0puGq69hKKO1aoNDhXqTq6Eh3guAAAgD8AAIA/syrSvY8STLoG6w45xB2fNGeaFzu0xSS4AACAPwAAgD8zDgW+YIaZPjynJT7NtG++GGc2vVAo8jwAAAAAAAAAAABQnTzOMgc/0laDPVWlnb5io0w9RteZPAAAAAAAAAAAMxrhPK41nLqyiuwzBt18L70Rw7qwuKSzAACAPwAAgD8AcBA7j/ZDulVTTjt66qw3AjHUuiJuHLoAAIA/AACAPzOmlbz2HEG6LfGHuFWXIrOOSRI6sj6cNwAAgD8AAIA/M62fvVyHJLoTR6W7oA7lN1bcnzuWXAS3AACAPwAAgD+m/+W9SLGWulaRDzsABIG0IvwJO1KDJboAAIA/AAAAAE1UWb3h1Jq6ygHRtZqWfbD2Giu5vqv1NAAAgD8AAIA/mh/fPI+Kf7povOC6GnrxNFmsJrulFAA6AACAPwAAgD8AYOy9rv/KPvXAmj60fZ6+N18vPtbbM70AAAAAAAAAAACgerxIl56610UWuMCMD7PhiGo6kvIsNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuAGfH0YDZECUhpRSlIwBbJRN6AOMAXSUR0CPd0lGgBcSdX2UKGgGaAloD0MIiIBDqFJVZ0CUhpRSlGgVTegDaBZHQI94Nrj5sTF1fZQoaAZoCWgPQwicUl4roZRhQJSGlFKUaBVN6ANoFkdAj3kAGSpzcXV9lChoBmgJaA9DCO5brRMXtGhAlIaUUpRoFU3oA2gWR0CPerHrhR64dX2UKGgGaAloD0MISMSUSCKvYECUhpRSlGgVTegDaBZHQI992qR2bG51fZQoaAZoCWgPQwjzjeie9VljQJSGlFKUaBVN6ANoFkdAj3/PX9R77nV9lChoBmgJaA9DCHizBu+rDWBAlIaUUpRoFU3oA2gWR0CPgNH80k4WdX2UKGgGaAloD0MI09heC/qNZUCUhpRSlGgVTegDaBZHQI+GlnIyTIN1fZQoaAZoCWgPQwj1aRX9IQ1nQJSGlFKUaBVN6ANoFkdAj4rad1+y7nV9lChoBmgJaA9DCOzBpPj4rGhAlIaUUpRoFU3oA2gWR0CPkKzkZJkHdX2UKGgGaAloD0MItTLhl/p1Z0CUhpRSlGgVTegDaBZHQI+VS2x6fJ51fZQoaAZoCWgPQwhqaW6FsOFjQJSGlFKUaBVN6ANoFkdAj6C1mapgkXV9lChoBmgJaA9DCDM1Cd6Qi19AlIaUUpRoFU3oA2gWR0CP2rOQhfShdX2UKGgGaAloD0MIx4LCoMxgY0CUhpRSlGgVTegDaBZHQI/hE0WM0gt1fZQoaAZoCWgPQwj76qpArcRkQJSGlFKUaBVN6ANoFkdAj+KqmKqGUXV9lChoBmgJaA9DCGhZ948FaWVAlIaUUpRoFU3oA2gWR0CP/FIqbz9TdX2UKGgGaAloD0MI4PYEiW1ScUCUhpRSlGgVTZoCaBZHQJAAmvmozep1fZQoaAZoCWgPQwh/+zpwTmJoQJSGlFKUaBVN6ANoFkdAkAqluejEenV9lChoBmgJaA9DCD4D6s2osWVAlIaUUpRoFU3oA2gWR0CQCxtv4ubrdX2UKGgGaAloD0MIINEEili6YkCUhpRSlGgVTegDaBZHQJALgg/1QIl1fZQoaAZoCWgPQwjnw7MEmX1kQJSGlFKUaBVN6ANoFkdAkAxN8JD3NHV9lChoBmgJaA9DCMpRgCiYSWBAlIaUUpRoFU3oA2gWR0CQDd0TDfm+dX2UKGgGaAloD0MI3LsGfWl3Y0CUhpRSlGgVTegDaBZHQJAOxgYxcml1fZQoaAZoCWgPQwjV0AZggw5jQJSGlFKUaBVN6ANoFkdAkA8+QU5+6XV9lChoBmgJaA9DCLaeIRwznnBAlIaUUpRoFU0SA2gWR0CQEg1bqyGBdX2UKGgGaAloD0MIBP9byQ4HZUCUhpRSlGgVTegDaBZHQJAUT9hqj8F1fZQoaAZoCWgPQwgwLH++rTRvQJSGlFKUaBVNtANoFkdAkBRfUF0PpnV9lChoBmgJaA9DCBFTIole+VRAlIaUUpRoFUuwaBZHQJAWjPeHi3p1fZQoaAZoCWgPQwgoDMo0mkthQJSGlFKUaBVN6ANoFkdAkBevv4M4LnV9lChoBmgJaA9DCFCOAkQBg3BAlIaUUpRoFU0zAmgWR0CQGfLOzIFNdX2UKGgGaAloD0MIih74GKyQSECUhpRSlGgVS8FoFkdAkBx+IEbHZXV9lChoBmgJaA9DCKJCdXNxA2lAlIaUUpRoFU3oA2gWR0CQNLYG+sYEdX2UKGgGaAloD0MI5PVgUnwTZ0CUhpRSlGgVTegDaBZHQJA3INsnAqN1fZQoaAZoCWgPQwifjscMVPZgQJSGlFKUaBVN6ANoFkdAkDe/ChvitXV9lChoBmgJaA9DCGgkQiNYjm9AlIaUUpRoFU0GA2gWR0CQQaAO8TSLdX2UKGgGaAloD0MIpUqUvaV7YECUhpRSlGgVTegDaBZHQJBENIK+i8F1fZQoaAZoCWgPQwj2e2KdKj1jQJSGlFKUaBVN6ANoFkdAkEzL5ylvZXV9lChoBmgJaA9DCKGd0yxQK2FAlIaUUpRoFU3oA2gWR0CQTR0Bfa6CdX2UKGgGaAloD0MI2o6pu7IgZECUhpRSlGgVTegDaBZHQJBNzz5GjKx1fZQoaAZoCWgPQwjeWFAYlPpiQJSGlFKUaBVN6ANoFkdAkE8h9Tgl4XV9lChoBmgJaA9DCB+g+3Lml2ZAlIaUUpRoFU3oA2gWR0CQT/GHpKSQdX2UKGgGaAloD0MIAd9t3jjAZkCUhpRSlGgVTegDaBZHQJBS+OLiuMd1fZQoaAZoCWgPQwjHhJhLqmxoQJSGlFKUaBVN6ANoFkdAkFUT7Q9idHV9lChoBmgJaA9DCGeY2lIHWUdAlIaUUpRoFUvRaBZHQJBWIKpkwvh1fZQoaAZoCWgPQwgAVdy4xTlfQJSGlFKUaBVN6ANoFkdAkFdvAbhm5HV9lChoBmgJaA9DCN0ostbQZ2dAlIaUUpRoFU3oA2gWR0CQWI3Zf2K3dX2UKGgGaAloD0MIZf88DRiOYECUhpRSlGgVTegDaBZHQJBa0BDG96F1fZQoaAZoCWgPQwgC1T+IZNJwQJSGlFKUaBVNQAFoFkdAkFxR3JPqLXV9lChoBmgJaA9DCJc8npafgWRAlIaUUpRoFU3oA2gWR0CQXV6iCaqkdX2UKGgGaAloD0MIycwFLg+UbECUhpRSlGgVTdADaBZHQJB0Sylenht1fZQoaAZoCWgPQwjtYwW/jdVmQJSGlFKUaBVN6ANoFkdAkHgsYht+C3V9lChoBmgJaA9DCAhagSGrSGNAlIaUUpRoFU3oA2gWR0CQeNtJ4B3idX2UKGgGaAloD0MIXio25nVbcUCUhpRSlGgVTfgCaBZHQJCDHYkE9uB1fZQoaAZoCWgPQwgPf03WqC5oQJSGlFKUaBVN6ANoFkdAkIN2lEZzgnV9lChoBmgJaA9DCNkFg2vuEG1AlIaUUpRoFU2BAmgWR0CQhRrIHTqjdX2UKGgGaAloD0MI00z3Omn0cECUhpRSlGgVTSECaBZHQJCFzJ2dNFl1fZQoaAZoCWgPQwgX1SKiGI5hQJSGlFKUaBVN6ANoFkdAkIZpvHcUNHV9lChoBmgJaA9DCNPaNLZX7mxAlIaUUpRoFU1XA2gWR0CQiFh5gPVedX2UKGgGaAloD0MIWaSJd4CHbUCUhpRSlGgVTeYBaBZHQJCJWjUNKAd1fZQoaAZoCWgPQwhyUpj3uLpvQJSGlFKUaBVNKgNoFkdAkIl09yLhrHV9lChoBmgJaA9DCP6arFHPUXFAlIaUUpRoFU0MAWgWR0CQj7MUAT7EdX2UKGgGaAloD0MIFvvL7kkpbUCUhpRSlGgVTTgDaBZHQJCQqX0Gu9x1fZQoaAZoCWgPQwioctpTcolRQJSGlFKUaBVLv2gWR0CQkYP4EfT1dX2UKGgGaAloD0MIBoAqbpwLc0CUhpRSlGgVTSUBaBZHQJCWg2zfJmx1fZQoaAZoCWgPQwjysiYWePFiQJSGlFKUaBVN6ANoFkdAkJfE+1SflXV9lChoBmgJaA9DCCaqtwY2k2dAlIaUUpRoFU3oA2gWR0CQm4qwhW5pdX2UKGgGaAloD0MIpfj4hGwpcUCUhpRSlGgVTfIBaBZHQJCbrcer+5x1fZQoaAZoCWgPQwiGrG71nCJhQJSGlFKUaBVN6ANoFkdAkJ20rTYukHV9lChoBmgJaA9DCD1H5LuUAmVAlIaUUpRoFU3oA2gWR0CQnyBXjlxPdX2UKGgGaAloD0MIA7LXu78GZECUhpRSlGgVTegDaBZHQJCkEESuhbp1fZQoaAZoCWgPQwivJ7ouvJFxQJSGlFKUaBVNowNoFkdAkKRcx0uDjHV9lChoBmgJaA9DCN9TOe2pim9AlIaUUpRoFU3dAWgWR0CQuJOFg2IgdX2UKGgGaAloD0MIsVBrmvf/bUCUhpRSlGgVTbICaBZHQJC4k+kgwGp1fZQoaAZoCWgPQwiFJ/T603ZxQJSGlFKUaBVNpgJoFkdAkLnLQokRjHV9lChoBmgJaA9DCEcBomDGzW9AlIaUUpRoFU3rAmgWR0CQumoicG1QdX2UKGgGaAloD0MIT6xT5fs2ZECUhpRSlGgVTegDaBZHQJC6+BMBZIR1fZQoaAZoCWgPQwg5X+y9eMxwQJSGlFKUaBVN+gFoFkdAkLtYg7o0RHV9lChoBmgJaA9DCN4E3zT9A3BAlIaUUpRoFUv4aBZHQJC7qiblRxd1fZQoaAZoCWgPQwgoucMmMn9RQJSGlFKUaBVLpmgWR0CQvZaGHpKSdX2UKGgGaAloD0MItksbDkvnSECUhpRSlGgVS85oFkdAkL9Jftx+8XV9lChoBmgJaA9DCIm1+BSAJm5AlIaUUpRoFU2AAmgWR0CQv1xtYSxrdX2UKGgGaAloD0MIPzvgumIxUkCUhpRSlGgVS69oFkdAkMAVuBMBZXV9lChoBmgJaA9DCHaKVYMwBW5AlIaUUpRoFU10AWgWR0CQwU+zMRpUdX2UKGgGaAloD0MIezGUE+3WYkCUhpRSlGgVTegDaBZHQJDBwi9qUNd1fZQoaAZoCWgPQwgepn1zf59RQJSGlFKUaBVLtWgWR0CQwdPhhpg1dX2UKGgGaAloD0MIl445z5gFc0CUhpRSlGgVTSABaBZHQJDDKgbp/w11fZQoaAZoCWgPQwjJrx9igxk3QJSGlFKUaBVLwWgWR0CQxvU+cH4XdX2UKGgGaAloD0MIVMcqpecNbkCUhpRSlGgVTcMCaBZHQJDIF10T1011fZQoaAZoCWgPQwiY+Q5+IhhwQJSGlFKUaBVNsQJoFkdAkMsdtuUD+3V9lChoBmgJaA9DCEMB28GIJm5AlIaUUpRoFU1NA2gWR0CQ0y/RE4NrdX2UKGgGaAloD0MIgzP4+8Vtb0CUhpRSlGgVTZUBaBZHQJDT2704BFN1fZQoaAZoCWgPQwhfQgWHF11mQJSGlFKUaBVN6ANoFkdAkNUrB42S+3V9lChoBmgJaA9DCEXVr3Q+S25AlIaUUpRoFU0PAmgWR0CQ1z4BV+7UdX2UKGgGaAloD0MIbJIf8atTcUCUhpRSlGgVTfEBaBZHQJDY52ovSMN1fZQoaAZoCWgPQwgFwk6xavJwQJSGlFKUaBVN0gFoFkdAkNkvCQ9zO3V9lChoBmgJaA9DCDrObcK9/kZAlIaUUpRoFUu+aBZHQJDd4aLn9vV1fZQoaAZoCWgPQwjtm/urh7ZwQJSGlFKUaBVNPQNoFkdAkN9JGFzuGHV9lChoBmgJaA9DCO0rD9LTLXFAlIaUUpRoFU23AmgWR0CQ38iQDFIedX2UKGgGaAloD0MIeedQhiqBcECUhpRSlGgVTQQCaBZHQJDgncWTHKh1fZQoaAZoCWgPQwhZxLDDmP9oQJSGlFKUaBVN6ANoFkdAkOQvIGQjlnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aab0f3448744c61f71a3f56a278fe703df6f88fe74826961530673a56d40c89b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05802a2b41c8e18a9294a06335818bdffa85b61b0a0474e1937a279906989514
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 278.3651444313022, "std_reward": 16.34301773339963, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T07:24:47.569829"}