File size: 12,010 Bytes
3a556c6 64d7832 3a556c6 a7cbab0 0436dc2 3e1c130 4262c97 a7cbab0 4262c97 3a556c6 9c5436a 3a556c6 9c5436a 3a556c6 0a30a52 3a556c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/usr/bin/env python3
import os
import re
from pathlib import Path
from typing import List
BASE_URL = "https://huggingface.co/csukuangfj/sherpa-onnx-apk/resolve/main/"
from dataclasses import dataclass
@dataclass
class APK:
major: int
minor: int
patch: int
arch: str
short_name: str
def __init__(self, s):
# sherpa-onnx-1.9.23-arm64-v8a-vad_asr-en-whisper_tiny.apk
# sherpa-onnx-1.9.23-x86-vad_asr-en-whisper_tiny.apk
s = str(s)[len("vad-asr/") :]
split = s.split("-")
self.major, self.minor, self.patch = list(map(int, split[2].split(".")))
self.arch = split[3]
self.lang = split[5]
self.short_name = split[6]
if "arm" in s:
self.arch += "-" + split[4]
self.lang = split[6]
self.short_name = split[7]
if "armeabi" in self.arch:
self.arch = "y" + self.arch
if "arm64" in self.arch:
self.arch = "z" + self.arch
if "small" in self.short_name:
self.short_name = "zzz" + self.short_name
def sort_by_apk(x):
x = APK(x)
return (x.major, x.minor, x.patch, x.arch, x.lang, x.short_name)
def generate_url(files: List[str]) -> List[str]:
ans = []
base = BASE_URL
for f in files:
ans.append(base + str(f))
return ans
def get_all_files(d: str, suffix: str) -> List[str]:
ans = sorted(Path(d).glob(suffix), key=sort_by_apk, reverse=True)
return list(map(lambda x: BASE_URL + str(x), ans))
def to_file(filename: str, files: List[str]):
content = r"""
<h1> APKs for VAD + non-streaming speech recognition </h1>
This page lists the <strong>VAD + non-streaming speech recognition</strong> APKs for <a href="http://github.com/k2-fsa/sherpa-onnx">sherpa-onnx</a>,
one of the deployment frameworks of <a href="https://github.com/k2-fsa">the Next-gen Kaldi project</a>.
<br/>
The name of an APK has the following rule:
<ul>
<li> sherpa-onnx-{version}-{arch}-vad_asr-{lang}-{model}.apk
</ul>
where
<ul>
<li> version: It specifies the current version, e.g., 1.9.23
<li> arch: The architecture targeted by this APK, e.g., arm64-v8a, armeabi-v7a, x86_64, x86
<li> lang: The lang of the model used in the APK, e.g., en for English, zh for Chinese
<li> model: The name of the model used in the APK
</ul>
<br/>
You can download all supported models from
<a href="https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models">https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models</a>
<br/>
<br/>
<strong>Note about the license</strong> The code of Next-gen Kaldi is using
<a href="https://www.apache.org/licenses/LICENSE-2.0">Apache-2.0 license</a>. However,
we support models from different frameworks. Please check the license of your selected model.
<br/>
<br/>
<!--
see https://www.tablesgenerator.com/html_tables#
-->
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}
.tg .tg-0lax{text-align:left;vertical-align:top}
</style>
<table class="tg">
<thead>
<tr>
<th class="tg-0pky">APK</th>
<th class="tg-0lax">Comment</th>
<th class="tg-0pky">VAD model</th>
<th class="tg-0pky">Non-streaming ASR model</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-zh-telespeech.apk</td>
<td class="tg-0lax">支持非常多种中文方言. It is converted from <a href="https://github.com/Tele-AI/TeleSpeech-ASR">https://github.com/Tele-AI/TeleSpeech-ASR</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2">sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-th-zipformer.apk</td>
<td class="tg-0lax">It supports only Thai. It is converted from <a href="https://huggingface.co/yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20/tree/main">https://huggingface.co/yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20/tree/main</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-thai-2024-06-20.tar.bz2">sherpa-onnx-zipformer-thai-2024-06-20.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-ko-zipformer.apk</td>
<td class="tg-0lax">It supports only Korean. It is converted from <a href="https://huggingface.co/johnBamma/icefall-asr-ksponspeech-zipformer-2024-06-24">https://huggingface.co/johnBamma/icefall-asr-ksponspeech-zipformer-2024-06-24</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-korean-2024-06-24.tar.bz2">sherpa-onnx-zipformer-korean-2024-06-24.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-be_de_en_es_fr_hr_it_pl_ru_uk-fast_conformer_ctc_20k.apk</td>
<td class="tg-0lax">It supports <span style="color:red;">10 languages</span>: Belarusian, German, English, Spanish, French, Croatian, Italian, Polish, Russian, and Ukrainian. It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_multilingual_fastconformer_hybrid_large_pc">STT Multilingual FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on ~20000 hours of data.</td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-en_des_es_fr-fast_conformer_ctc_14288.apk</td>
<td class="tg-0lax">It supports <span style="color:red;">4 languages</span>: German, English, Spanish, and French . It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_multilingual_fastconformer_hybrid_large_pc_blend_eu">STT European FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on 14288 hours of data.</td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-en-de-es-fr-14288.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-en-de-es-fr-14288.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-es-fast_conformer_ctc_1424.apk</td>
<td class="tg-0lax">It supports only Spanish. It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_es_fastconformer_hybrid_large_pc">STT Es FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on 1424 hours of data.</td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-es-1424.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-es-1424.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-en-fast_conformer_ctc_24500.apk</td>
<td class="tg-0lax">It supports only English. It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_hybrid_large_pc">STT En FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on 8500 hours of data.</td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-en-24500.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-en-24500.tar.bz2</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-zh-zipformer.apk</td>
<td class="tg-0lax">It supports only Chinese.</td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/icefall-asr-zipformer-wenetspeech-20230615.tar.bz2">icefall-asr-zipformer-wenetspeech-20230615</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-zh-paraformer.apk</td>
<td class="tg-0lax"><span style="font-weight:400;font-style:normal">It supports both Chinese and English.</span></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2">sherpa-onnx-paraformer-zh-2023-03-28</a></td>
</tr>
<tr>
<td class="tg-0pky">sherpa-onnx-x.y.z-arm64-v8a-vad_asr-en-whisper_tiny.apk</td>
<td class="tg-0lax">It supports only English.</td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
<td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2">sherpa-onnx-whisper-tiny.en</a></td>
</tr>
</tbody>
</table>
<br/>
<br/>
<div/>
"""
if "-cn" not in filename:
content += """
For Chinese users, please <a href="./apk-asr-cn.html">visit this address</a>,
which replaces <a href="huggingface.co">huggingface.co</a> with <a href="hf-mirror.com">hf-mirror.com</a>
<br/>
<br/>
中国用户, 请访问<a href="./apk-asr-cn.html">这个地址</a>
<br/>
<br/>
"""
with open(filename, "w") as f:
print(content, file=f)
for x in files:
name = x.rsplit("/", maxsplit=1)[-1]
print(f'<a href="{x}" />{name}<br/>', file=f)
def main():
apk = get_all_files("vad-asr", suffix="*.apk")
to_file("./apk-vad-asr.html", apk)
# for Chinese users
apk2 = []
for a in apk:
a = a.replace("huggingface.co", "hf-mirror.com")
a = a.replace("resolve", "blob")
apk2.append(a)
to_file("./apk-vad-asr-cn.html", apk2)
if __name__ == "__main__":
main()
|