File size: 38,280 Bytes
efec1c4
 
 
 
 
 
 
 
 
 
2f25aea
efec1c4
 
 
 
9169bfd
2f25aea
efec1c4
2f25aea
efec1c4
2f25aea
efec1c4
 
 
 
 
 
 
2f25aea
 
 
efec1c4
 
10d3f10
2f25aea
 
 
 
624349c
efec1c4
2f25aea
 
efec1c4
 
2f25aea
39ab62e
 
2f25aea
39ab62e
9169bfd
efec1c4
 
2f25aea
feeecd0
efec1c4
acd253c
efec1c4
2f25aea
efec1c4
2f25aea
efec1c4
 
 
2f25aea
efec1c4
f115e8f
efec1c4
 
 
 
2f25aea
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
2f25aea
efec1c4
f115e8f
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feeecd0
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
 
 
 
efec1c4
 
 
 
 
 
 
 
 
 
 
2f25aea
efec1c4
 
 
 
 
 
2f25aea
efec1c4
9169bfd
 
 
 
 
 
 
 
 
2f25aea
 
 
 
 
 
 
 
 
efec1c4
 
 
f115e8f
 
 
 
 
 
 
efec1c4
 
2f25aea
 
efec1c4
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
acd253c
 
2f25aea
acd253c
 
 
2f25aea
 
 
 
 
efec1c4
 
 
 
 
 
2f25aea
efec1c4
f115e8f
efec1c4
 
 
 
 
 
 
 
 
 
acd253c
 
 
efec1c4
 
acd253c
 
 
2f25aea
acd253c
efec1c4
acd253c
efec1c4
 
2f25aea
 
 
 
 
acd253c
 
 
 
 
2f25aea
acd253c
2f25aea
 
 
 
 
efec1c4
 
feeecd0
 
 
2f25aea
acd253c
feeecd0
 
2f25aea
 
 
 
 
 
 
feeecd0
2f25aea
efec1c4
 
 
 
bb217cf
 
 
efec1c4
 
2f25aea
 
 
efec1c4
 
 
 
 
2f25aea
efec1c4
 
 
2f25aea
 
efec1c4
 
 
2f25aea
 
 
 
efec1c4
 
2f25aea
 
 
 
efec1c4
2f25aea
efec1c4
 
 
2f25aea
 
 
 
 
efec1c4
2f25aea
 
 
 
9169bfd
2f25aea
 
 
9169bfd
2f25aea
 
 
 
 
 
 
 
 
 
 
9169bfd
2f25aea
 
9169bfd
 
2f25aea
 
 
 
 
 
 
 
 
 
efec1c4
2f25aea
 
 
 
9169bfd
efec1c4
9169bfd
2f25aea
efec1c4
 
2f25aea
 
 
efec1c4
2f25aea
5fcf2b8
2f25aea
 
5fcf2b8
 
2f25aea
 
 
 
f115e8f
 
 
 
 
 
2f25aea
 
 
 
 
f115e8f
efec1c4
2f25aea
 
 
efec1c4
 
 
 
 
 
 
 
 
 
acd253c
efec1c4
acd253c
efec1c4
 
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efec1c4
2f25aea
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f115e8f
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10d3f10
2f25aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd253c
2f25aea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
"""
Geneformer in silico perturber.

Usage:
  from geneformer import InSilicoPerturber
  isp = InSilicoPerturber(perturb_type="delete",
                          perturb_rank_shift=None,
                          genes_to_perturb="all",
                          combos=0,
                          anchor_gene=None,
                          model_type="CellClassifier",
                          num_classes=0,
                          emb_mode="cell",
                          cell_emb_style="mean_pool",
                          filter_data={"cell_type":["cardiomyocyte"]},
                          cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]},
                          state_embs_dict ={"nf": emb_nf, "hcm": emb_hcm, "dcm": emb_dcm, "other1": emb_other1, "other2": emb_other2},
                          max_ncells=None,
                          emb_layer=0,
                          forward_batch_size=100,
                          nproc=16)
  isp.perturb_data("path/to/model",
                   "path/to/input_data",
                   "path/to/output_directory",
                   "output_prefix")
"""

import logging

# imports
import os
import pickle
from collections import defaultdict
from typing import List

import seaborn as sns
import torch
from datasets import Dataset
from tqdm.auto import trange

from . import perturber_utils as pu
from .emb_extractor import get_embs
from .tokenizer import TOKEN_DICTIONARY_FILE

sns.set()


logger = logging.getLogger(__name__)


class InSilicoPerturber:
    valid_option_dict = {
        "perturb_type": {"delete", "overexpress", "inhibit", "activate"},
        "perturb_rank_shift": {None, 1, 2, 3},
        "genes_to_perturb": {"all", list},
        "combos": {0, 1},
        "anchor_gene": {None, str},
        "model_type": {"Pretrained", "GeneClassifier", "CellClassifier"},
        "num_classes": {int},
        "emb_mode": {"cell", "cell_and_gene"},
        "cell_emb_style": {"mean_pool"},
        "filter_data": {None, dict},
        "cell_states_to_model": {None, dict},
        "state_embs_dict": {None, dict},
        "max_ncells": {None, int},
        "cell_inds_to_perturb": {"all", dict},
        "emb_layer": {-1, 0},
        "forward_batch_size": {int},
        "nproc": {int},
    }

    def __init__(
        self,
        perturb_type="delete",
        perturb_rank_shift=None,
        genes_to_perturb="all",
        combos=0,
        anchor_gene=None,
        model_type="Pretrained",
        num_classes=0,
        emb_mode="cell",
        cell_emb_style="mean_pool",
        filter_data=None,
        cell_states_to_model=None,
        state_embs_dict=None,
        max_ncells=None,
        cell_inds_to_perturb="all",
        emb_layer=-1,
        forward_batch_size=100,
        nproc=4,
        token_dictionary_file=TOKEN_DICTIONARY_FILE,
    ):
        """
        Initialize in silico perturber.

        Parameters
        ----------
        perturb_type : {"delete","overexpress","inhibit","activate"}
            Type of perturbation.
            "delete": delete gene from rank value encoding
            "overexpress": move gene to front of rank value encoding
            "inhibit": move gene to lower quartile of rank value encoding
            "activate": move gene to higher quartile of rank value encoding
        perturb_rank_shift : None, {1,2,3}
            Number of quartiles by which to shift rank of gene.
            For example, if perturb_type="activate" and perturb_rank_shift=1:
                genes in 4th quartile will move to middle of 3rd quartile.
                genes in 3rd quartile will move to middle of 2nd quartile.
                genes in 2nd quartile will move to middle of 1st quartile.
                genes in 1st quartile will move to front of rank value encoding.
            For example, if perturb_type="inhibit" and perturb_rank_shift=2:
                genes in 1st quartile will move to middle of 3rd quartile.
                genes in 2nd quartile will move to middle of 4th quartile.
                genes in 3rd or 4th quartile will move to bottom of rank value encoding.
        genes_to_perturb : "all", list
            Default is perturbing each gene detected in each cell in the dataset.
            Otherwise, may provide a list of ENSEMBL IDs of genes to perturb.
            If gene list is provided, then perturber will only test perturbing them all together
            (rather than testing each possible combination of the provided genes).
        combos : {0,1}
            Whether to perturb genes individually (0) or in pairs (1).
        anchor_gene : None, str
            ENSEMBL ID of gene to use as anchor in combination perturbations.
            For example, if combos=1 and anchor_gene="ENSG00000148400":
                anchor gene will be perturbed in combination with each other gene.
        model_type : {"Pretrained","GeneClassifier","CellClassifier"}
            Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
        num_classes : int
            If model is a gene or cell classifier, specify number of classes it was trained to classify.
            For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
        emb_mode : {"cell","cell_and_gene"}
            Whether to output impact of perturbation on cell and/or gene embeddings.
            Gene embedding shifts only available as compared to original cell, not comparing to goal state.
        cell_emb_style : "mean_pool"
            Method for summarizing cell embeddings.
            Currently only option is mean pooling of gene embeddings for given cell.
        filter_data : None, dict
            Default is to use all input data for in silico perturbation study.
            Otherwise, dictionary specifying .dataset column name and list of values to filter by.
        cell_states_to_model : None, dict
            Cell states to model if testing perturbations that achieve goal state change.
            Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
            state_key: key specifying name of column in .dataset that defines the start/goal states
            start_state: value in the state_key column that specifies the start state
            goal_state: value in the state_key column taht specifies the goal end state
            alt_states: list of values in the state_key column that specify the alternate end states
            For example: {"state_key": "disease",
                          "start_state": "dcm",
                          "goal_state": "nf",
                          "alt_states": ["hcm", "other1", "other2"]}
        state_embs_dict : None, dict
            Embedding positions of each cell state to model shifts from/towards (e.g. mean or median).
            Dictionary with keys specifying each possible cell state to model.
            Values are target embedding positions as torch.tensor.
            For example: {"nf": emb_nf,
                          "hcm": emb_hcm,
                          "dcm": emb_dcm,
                          "other1": emb_other1,
                          "other2": emb_other2}
        max_ncells : None, int
            Maximum number of cells to test.
            If None, will test all cells.
        cell_inds_to_perturb : "all", list
            Default is perturbing each cell in the dataset.
            Otherwise, may provide a dict of indices of cells to perturb with keys start_ind and end_ind.
            start_ind: the first index to perturb.
            end_ind: the last index to perturb (exclusive).
            Indices will be selected *after* the filter_data criteria and sorting.
            Useful for splitting extremely large datasets across separate GPUs.
        emb_layer : {-1, 0}
            Embedding layer to use for quantification.
            0: last layer (recommended for questions closely tied to model's training objective)
            -1: 2nd to last layer (recommended for questions requiring more general representations)
        forward_batch_size : int
            Batch size for forward pass.
        nproc : int
            Number of CPU processes to use.
        token_dictionary_file : Path
            Path to pickle file containing token dictionary (Ensembl ID:token).
        """

        self.perturb_type = perturb_type
        self.perturb_rank_shift = perturb_rank_shift
        self.genes_to_perturb = genes_to_perturb
        self.combos = combos
        self.anchor_gene = anchor_gene
        if self.genes_to_perturb == "all":
            self.perturb_group = False
        else:
            self.perturb_group = True
            if (self.anchor_gene is not None) or (self.combos != 0):
                self.anchor_gene = None
                self.combos = 0
                logger.warning(
                    "anchor_gene set to None and combos set to 0. "
                    "If providing list of genes to perturb, "
                    "list of genes_to_perturb will be perturbed together, "
                    "without anchor gene or combinations."
                )
        self.model_type = model_type
        self.num_classes = num_classes
        self.emb_mode = emb_mode
        self.cell_emb_style = cell_emb_style
        self.filter_data = filter_data
        self.cell_states_to_model = cell_states_to_model
        self.state_embs_dict = state_embs_dict
        self.max_ncells = max_ncells
        self.cell_inds_to_perturb = cell_inds_to_perturb
        self.emb_layer = emb_layer
        self.forward_batch_size = forward_batch_size
        self.nproc = nproc

        self.validate_options()

        # load token dictionary (Ensembl IDs:token)
        with open(token_dictionary_file, "rb") as f:
            self.gene_token_dict = pickle.load(f)

        self.pad_token_id = self.gene_token_dict.get("<pad>")

        if self.anchor_gene is None:
            self.anchor_token = None
        else:
            try:
                self.anchor_token = [self.gene_token_dict[self.anchor_gene]]
            except KeyError:
                logger.error(f"Anchor gene {self.anchor_gene} not in token dictionary.")
                raise

        if self.genes_to_perturb == "all":
            self.tokens_to_perturb = "all"
        else:
            missing_genes = [
                gene
                for gene in self.genes_to_perturb
                if gene not in self.gene_token_dict.keys()
            ]
            if len(missing_genes) == len(self.genes_to_perturb):
                logger.error(
                    "None of the provided genes to perturb are in token dictionary."
                )
                raise
            elif len(missing_genes) > 0:
                logger.warning(
                    f"Genes to perturb {missing_genes} are not in token dictionary."
                )
            self.tokens_to_perturb = [
                self.gene_token_dict.get(gene) for gene in self.genes_to_perturb
            ]

    def validate_options(self):
        # first disallow options under development
        if self.perturb_type in ["inhibit", "activate"]:
            logger.error(
                "In silico inhibition and activation currently under development. "
                "Current valid options for 'perturb_type': 'delete' or 'overexpress'"
            )
            raise
        if (self.combos > 0) and (self.anchor_token is None):
            logger.error(
                "Combination perturbation without anchor gene is currently under development. "
                "Currently, must provide anchor gene for combination perturbation."
            )
            raise

        # confirm arguments are within valid options and compatible with each other
        for attr_name, valid_options in self.valid_option_dict.items():
            attr_value = self.__dict__[attr_name]
            if type(attr_value) not in {list, dict}:
                if attr_value in valid_options:
                    continue
                if attr_name in ["anchor_gene"]:
                    if type(attr_name) in {str}:
                        continue
            valid_type = False
            for option in valid_options:
                if (option in [bool, int, list, dict]) and isinstance(
                    attr_value, option
                ):
                    valid_type = True
                    break
            if valid_type:
                continue
            logger.error(
                f"Invalid option for {attr_name}. "
                f"Valid options for {attr_name}: {valid_options}"
            )
            raise

        if self.perturb_type in ["delete", "overexpress"]:
            if self.perturb_rank_shift is not None:
                if self.perturb_type == "delete":
                    logger.warning(
                        "perturb_rank_shift set to None. "
                        "If perturb type is delete then gene is deleted entirely "
                        "rather than shifted by quartile"
                    )
                elif self.perturb_type == "overexpress":
                    logger.warning(
                        "perturb_rank_shift set to None. "
                        "If perturb type is overexpress then gene is moved to front "
                        "of rank value encoding rather than shifted by quartile"
                    )
            self.perturb_rank_shift = None

        if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"):
            self.emb_mode = "cell"
            logger.warning(
                "emb_mode set to 'cell'. "
                "Currently, analysis with anchor gene "
                "only outputs effect on cell embeddings."
            )

        if self.cell_states_to_model is not None:
            pu.validate_cell_states_to_model(self.cell_states_to_model)

            if self.anchor_gene is not None:
                self.anchor_gene = None
                logger.warning(
                    "anchor_gene set to None. "
                    "Currently, anchor gene not available "
                    "when modeling multiple cell states."
                )

            if self.state_embs_dict is None:
                logger.error(
                    "state_embs_dict must be provided for mode with cell_states_to_model. "
                    "Format is dictionary with keys specifying each possible cell state to model. "
                    "Values are target embedding positions as torch.tensor."
                )
                raise

            for state_emb in self.state_embs_dict.values():
                if not torch.is_tensor(state_emb):
                    logger.error(
                        "state_embs_dict must be dictionary with values being torch.tensor."
                    )
                    raise

            keys_absent = []
            for k, v in self.cell_states_to_model.items():
                if (k == "start_state") or (k == "goal_state"):
                    if v not in self.state_embs_dict.keys():
                        keys_absent.append(v)
                if k == "alt_states":
                    for state in v:
                        if state not in self.state_embs_dict.keys():
                            keys_absent.append(state)
            if len(keys_absent) > 0:
                logger.error(
                    "Each start_state, goal_state, and alt_states in cell_states_to_model "
                    "must be a key in state_embs_dict with the value being "
                    "the state's embedding position as torch.tensor. "
                    f"Missing keys: {keys_absent}"
                )
                raise

        if self.perturb_type in ["inhibit", "activate"]:
            if self.perturb_rank_shift is None:
                logger.error(
                    "If perturb_type is inhibit or activate then "
                    "quartile to shift by must be specified."
                )
                raise

        if self.filter_data is not None:
            for key, value in self.filter_data.items():
                if not isinstance(value, list):
                    self.filter_data[key] = [value]
                    logger.warning(
                        "Values in filter_data dict must be lists. "
                        f"Changing {key} value to list ([{value}])."
                    )

        if self.cell_inds_to_perturb != "all":
            if set(self.cell_inds_to_perturb.keys()) != {"start", "end"}:
                logger.error(
                    "If cell_inds_to_perturb is a dictionary, keys must be 'start' and 'end'."
                )
                raise
            if (
                self.cell_inds_to_perturb["start"] < 0
                or self.cell_inds_to_perturb["end"] < 0
            ):
                logger.error("cell_inds_to_perturb must be positive.")
                raise

    def perturb_data(
        self, model_directory, input_data_file, output_directory, output_prefix
    ):
        """
        Perturb genes in input data and save as results in output_directory.

        Parameters
        ----------
        model_directory : Path
            Path to directory containing model
        input_data_file : Path
            Path to directory containing .dataset inputs
        output_directory : Path
            Path to directory where perturbation data will be saved as batched pickle files
        output_prefix : str
            Prefix for output files
        """

        ### format output path ###
        output_path_prefix = os.path.join(
            output_directory, f"in_silico_{self.perturb_type}_{output_prefix}"
        )

        ### load model and define parameters ###
        model = pu.load_model(self.model_type, self.num_classes, model_directory)
        self.max_len = pu.get_model_input_size(model)
        layer_to_quant = pu.quant_layers(model) + self.emb_layer

        ### filter input data ###
        # general filtering of input data based on filter_data argument
        filtered_input_data = pu.load_and_filter(
            self.filter_data, self.nproc, input_data_file
        )
        filtered_input_data = self.apply_additional_filters(filtered_input_data)

        if self.perturb_group is True:
            self.isp_perturb_set(
                model, filtered_input_data, layer_to_quant, output_path_prefix
            )
        else:
            self.isp_perturb_all(
                model, filtered_input_data, layer_to_quant, output_path_prefix
            )

    def apply_additional_filters(self, filtered_input_data):
        # additional filtering of input data dependent on isp mode
        if self.cell_states_to_model is not None:
            # filter for cells with start_state and log result
            filtered_input_data = pu.filter_data_by_start_state(
                filtered_input_data, self.cell_states_to_model, self.nproc
            )

        if (self.tokens_to_perturb != "all") and (self.perturb_type != "overexpress"):
            # filter for cells with tokens_to_perturb and log result
            filtered_input_data = pu.filter_data_by_tokens_and_log(
                filtered_input_data,
                self.tokens_to_perturb,
                self.nproc,
                "genes_to_perturb",
            )

        if self.anchor_token is not None:
            # filter for cells with anchor gene and log result
            filtered_input_data = pu.filter_data_by_tokens_and_log(
                filtered_input_data, self.anchor_token, self.nproc, "anchor_gene"
            )

        # downsample and sort largest to smallest to encounter memory constraints earlier
        filtered_input_data = pu.downsample_and_sort(
            filtered_input_data, self.max_ncells
        )

        # slice dataset if cells_inds_to_perturb is not "all"
        if self.cell_inds_to_perturb != "all":
            filtered_input_data = pu.slice_by_inds_to_perturb(
                filtered_input_data, self.cell_inds_to_perturb
            )

        return filtered_input_data

    def isp_perturb_set(
        self,
        model,
        filtered_input_data: Dataset,
        layer_to_quant: int,
        output_path_prefix: str,
    ):
        def make_group_perturbation_batch(example):
            example_input_ids = example["input_ids"]
            example["tokens_to_perturb"] = self.tokens_to_perturb
            indices_to_perturb = [
                example_input_ids.index(token) if token in example_input_ids else None
                for token in self.tokens_to_perturb
            ]
            indices_to_perturb = [
                item for item in indices_to_perturb if item is not None
            ]
            if len(indices_to_perturb) > 0:
                example["perturb_index"] = indices_to_perturb
            else:
                # -100 indicates tokens to overexpress are not present in rank value encoding
                example["perturb_index"] = [-100]
            if self.perturb_type == "delete":
                example = pu.delete_indices(example)
            elif self.perturb_type == "overexpress":
                example = pu.overexpress_tokens(example, self.max_len)
                example["n_overflow"] = pu.calc_n_overflow(
                    self.max_len,
                    example["length"],
                    self.tokens_to_perturb,
                    indices_to_perturb,
                )
            return example

        total_batch_length = len(filtered_input_data)
        if self.cell_states_to_model is None:
            cos_sims_dict = defaultdict(list)
        else:
            cos_sims_dict = {
                state: defaultdict(list)
                for state in pu.get_possible_states(self.cell_states_to_model)
            }

        perturbed_data = filtered_input_data.map(
            make_group_perturbation_batch, num_proc=self.nproc
        )
        if self.perturb_type == "overexpress":
            filtered_input_data = filtered_input_data.add_column(
                "n_overflow", perturbed_data["n_overflow"]
            )
            # remove overflow genes from original data so that embeddings are comparable
            # i.e. if original cell has genes 0:2047 and you want to overexpress new gene 2048,
            # then the perturbed cell will be 2048+0:2046 so we compare it to an original cell 0:2046.
            # (otherwise we will be modeling the effect of both deleting 2047 and adding 2048,
            # rather than only adding 2048)
            filtered_input_data = filtered_input_data.map(
                pu.truncate_by_n_overflow, num_proc=self.nproc
            )

        if self.emb_mode == "cell_and_gene":
            stored_gene_embs_dict = defaultdict(list)

        # iterate through batches
        for i in trange(0, total_batch_length, self.forward_batch_size):
            max_range = min(i + self.forward_batch_size, total_batch_length)
            inds_select = [i for i in range(i, max_range)]

            minibatch = filtered_input_data.select(inds_select)
            perturbation_batch = perturbed_data.select(inds_select)

            if self.cell_emb_style == "mean_pool":
                full_original_emb = get_embs(
                    model,
                    minibatch,
                    "gene",
                    layer_to_quant,
                    self.pad_token_id,
                    self.forward_batch_size,
                    summary_stat=None,
                    silent=True,
                )
                indices_to_perturb = perturbation_batch["perturb_index"]
                # remove indices that were perturbed
                original_emb = pu.remove_perturbed_indices_set(
                    full_original_emb,
                    self.perturb_type,
                    indices_to_perturb,
                    self.tokens_to_perturb,
                    minibatch["length"],
                )
                full_perturbation_emb = get_embs(
                    model,
                    perturbation_batch,
                    "gene",
                    layer_to_quant,
                    self.pad_token_id,
                    self.forward_batch_size,
                    summary_stat=None,
                    silent=True,
                )

                # remove overexpressed genes
                if self.perturb_type == "overexpress":
                    perturbation_emb = full_perturbation_emb[
                        :, len(self.tokens_to_perturb) :, :
                    ]

                elif self.perturb_type == "delete":
                    perturbation_emb = full_perturbation_emb[
                        :, : max(perturbation_batch["length"]), :
                    ]

                n_perturbation_genes = perturbation_emb.size()[1]

                # if no goal states, the cosine similarties are the mean of gene cosine similarities
                if (
                    self.cell_states_to_model is None
                    or self.emb_mode == "cell_and_gene"
                ):
                    gene_cos_sims = pu.quant_cos_sims(
                        perturbation_emb,
                        original_emb,
                        self.cell_states_to_model,
                        self.state_embs_dict,
                        emb_mode="gene",
                    )

                # if there are goal states, the cosine similarities are the cell cosine similarities
                if self.cell_states_to_model is not None:
                    original_cell_emb = pu.mean_nonpadding_embs(
                        full_original_emb,
                        torch.tensor(minibatch["length"], device="cuda"),
                        dim=1,
                    )
                    perturbation_cell_emb = pu.mean_nonpadding_embs(
                        full_perturbation_emb,
                        torch.tensor(perturbation_batch["length"], device="cuda"),
                        dim=1,
                    )
                    cell_cos_sims = pu.quant_cos_sims(
                        perturbation_cell_emb,
                        original_cell_emb,
                        self.cell_states_to_model,
                        self.state_embs_dict,
                        emb_mode="cell",
                    )

                # get cosine similarities in gene embeddings
                # if getting gene embeddings, need gene names
                if self.emb_mode == "cell_and_gene":
                    gene_list = minibatch["input_ids"]
                    # need to truncate gene_list
                    gene_list = [
                        [g for g in genes if g not in self.tokens_to_perturb][
                            :n_perturbation_genes
                        ]
                        for genes in gene_list
                    ]

                    for cell_i, genes in enumerate(gene_list):
                        for gene_j, affected_gene in enumerate(genes):
                            if len(self.genes_to_perturb) > 1:
                                tokens_to_perturb = tuple(self.tokens_to_perturb)
                            else:
                                tokens_to_perturb = self.tokens_to_perturb

                            # fill in the gene cosine similarities
                            try:
                                stored_gene_embs_dict[
                                    (tokens_to_perturb, affected_gene)
                                ].append(gene_cos_sims[cell_i, gene_j].item())
                            except KeyError:
                                stored_gene_embs_dict[
                                    (tokens_to_perturb, affected_gene)
                                ] = gene_cos_sims[cell_i, gene_j].item()
                else:
                    gene_list = None

            if self.cell_states_to_model is None:
                # calculate the mean of the gene cosine similarities for cell shift
                # tensor of nonpadding lengths for each cell
                if self.perturb_type == "overexpress":
                    # subtract number of genes that were overexpressed
                    # since they are removed before getting cos sims
                    n_overexpressed = len(self.tokens_to_perturb)
                    nonpadding_lens = [
                        x - n_overexpressed for x in perturbation_batch["length"]
                    ]
                else:
                    nonpadding_lens = perturbation_batch["length"]
                cos_sims_data = pu.mean_nonpadding_embs(
                    gene_cos_sims, torch.tensor(nonpadding_lens, device="cuda")
                )
                cos_sims_dict = self.update_perturbation_dictionary(
                    cos_sims_dict,
                    cos_sims_data,
                    filtered_input_data,
                    indices_to_perturb,
                    gene_list,
                )
            else:
                cos_sims_data = cell_cos_sims
                for state in cos_sims_dict.keys():
                    cos_sims_dict[state] = self.update_perturbation_dictionary(
                        cos_sims_dict[state],
                        cos_sims_data[state],
                        filtered_input_data,
                        indices_to_perturb,
                        gene_list,
                    )
            del minibatch
            del perturbation_batch
            del original_emb
            del perturbation_emb
            del cos_sims_data

            torch.cuda.empty_cache()

        pu.write_perturbation_dictionary(
            cos_sims_dict,
            f"{output_path_prefix}_cell_embs_dict_{self.tokens_to_perturb}",
        )

        if self.emb_mode == "cell_and_gene":
            pu.write_perturbation_dictionary(
                stored_gene_embs_dict,
                f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}",
            )

    def isp_perturb_all(
        self,
        model,
        filtered_input_data: Dataset,
        layer_to_quant: int,
        output_path_prefix: str,
    ):
        pickle_batch = -1
        if self.cell_states_to_model is None:
            cos_sims_dict = defaultdict(list)
        else:
            cos_sims_dict = {
                state: defaultdict(list)
                for state in pu.get_possible_states(self.cell_states_to_model)
            }

        if self.emb_mode == "cell_and_gene":
            stored_gene_embs_dict = defaultdict(list)
        for i in trange(len(filtered_input_data)):
            example_cell = filtered_input_data.select([i])
            full_original_emb = get_embs(
                model,
                example_cell,
                "gene",
                layer_to_quant,
                self.pad_token_id,
                self.forward_batch_size,
                summary_stat=None,
                silent=True,
            )

            # gene_list is used to assign cos sims back to genes
            # need to remove the anchor gene
            gene_list = example_cell["input_ids"][0][:]
            if self.anchor_token is not None:
                for token in self.anchor_token:
                    gene_list.remove(token)

            perturbation_batch, indices_to_perturb = pu.make_perturbation_batch(
                example_cell,
                self.perturb_type,
                self.tokens_to_perturb,
                self.anchor_token,
                self.combos,
                self.nproc,
            )

            full_perturbation_emb = get_embs(
                model,
                perturbation_batch,
                "gene",
                layer_to_quant,
                self.pad_token_id,
                self.forward_batch_size,
                summary_stat=None,
                silent=True,
            )

            num_inds_perturbed = 1 + self.combos
            # need to remove overexpressed gene to quantify cosine shifts
            if self.perturb_type == "overexpress":
                perturbation_emb = full_perturbation_emb[:, num_inds_perturbed:, :]
                gene_list = gene_list[
                    num_inds_perturbed:
                ]  # index 0 is not overexpressed

            elif self.perturb_type == "delete":
                perturbation_emb = full_perturbation_emb

            original_batch = pu.make_comparison_batch(
                full_original_emb, indices_to_perturb, perturb_group=False
            )

            if self.cell_states_to_model is None or self.emb_mode == "cell_and_gene":
                gene_cos_sims = pu.quant_cos_sims(
                    perturbation_emb,
                    original_batch,
                    self.cell_states_to_model,
                    self.state_embs_dict,
                    emb_mode="gene",
                )
            if self.cell_states_to_model is not None:
                original_cell_emb = pu.compute_nonpadded_cell_embedding(
                    full_original_emb, "mean_pool"
                )
                perturbation_cell_emb = pu.compute_nonpadded_cell_embedding(
                    full_perturbation_emb, "mean_pool"
                )

                cell_cos_sims = pu.quant_cos_sims(
                    perturbation_cell_emb,
                    original_cell_emb,
                    self.cell_states_to_model,
                    self.state_embs_dict,
                    emb_mode="cell",
                )

            if self.emb_mode == "cell_and_gene":
                # remove perturbed index for gene list
                perturbed_gene_dict = {
                    gene: gene_list[:i] + gene_list[i + 1 :]
                    for i, gene in enumerate(gene_list)
                }

                for perturbation_i, perturbed_gene in enumerate(gene_list):
                    for gene_j, affected_gene in enumerate(
                        perturbed_gene_dict[perturbed_gene]
                    ):
                        try:
                            stored_gene_embs_dict[
                                (perturbed_gene, affected_gene)
                            ].append(gene_cos_sims[perturbation_i, gene_j].item())
                        except KeyError:
                            stored_gene_embs_dict[
                                (perturbed_gene, affected_gene)
                            ] = gene_cos_sims[perturbation_i, gene_j].item()

            if self.cell_states_to_model is None:
                cos_sims_data = torch.mean(gene_cos_sims, dim=1)
                cos_sims_dict = self.update_perturbation_dictionary(
                    cos_sims_dict,
                    cos_sims_data,
                    filtered_input_data,
                    indices_to_perturb,
                    gene_list,
                )
            else:
                cos_sims_data = cell_cos_sims
                for state in cos_sims_dict.keys():
                    cos_sims_dict[state] = self.update_perturbation_dictionary(
                        cos_sims_dict[state],
                        cos_sims_data[state],
                        filtered_input_data,
                        indices_to_perturb,
                        gene_list,
                    )

            # save dict to disk every 100 cells
            if i % 100 == 0:
                pu.write_perturbation_dictionary(
                    cos_sims_dict,
                    f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}",
                )
                if self.emb_mode == "cell_and_gene":
                    pu.write_perturbation_dictionary(
                        stored_gene_embs_dict,
                        f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
                    )

            # reset and clear memory every 1000 cells
            if i % 1000 == 0:
                pickle_batch += 1
                if self.cell_states_to_model is None:
                    cos_sims_dict = defaultdict(list)
                else:
                    cos_sims_dict = {
                        state: defaultdict(list)
                        for state in pu.get_possible_states(self.cell_states_to_model)
                    }

                if self.emb_mode == "cell_and_gene":
                    stored_gene_embs_dict = defaultdict(list)

                torch.cuda.empty_cache()

        pu.write_perturbation_dictionary(
            cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}"
        )

        if self.emb_mode == "cell_and_gene":
            pu.write_perturbation_dictionary(
                stored_gene_embs_dict,
                f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
            )

    def update_perturbation_dictionary(
        self,
        cos_sims_dict: defaultdict,
        cos_sims_data: torch.Tensor,
        filtered_input_data: Dataset,
        indices_to_perturb: List[List[int]],
        gene_list=None,
    ):
        if gene_list is not None and cos_sims_data.shape[0] != len(gene_list):
            logger.error(
                f"len(cos_sims_data.shape[0]) != len(gene_list). \n \
                            cos_sims_data.shape[0] = {cos_sims_data.shape[0]}.\n \
                            len(gene_list) = {len(gene_list)}."
            )
            raise

        if self.perturb_group is True:
            if len(self.tokens_to_perturb) > 1:
                perturbed_genes = tuple(self.tokens_to_perturb)
            else:
                perturbed_genes = self.tokens_to_perturb[0]

            # if cell embeddings, can just append
            # shape will be (batch size, 1)
            cos_sims_data = torch.squeeze(cos_sims_data).tolist()

            # handle case of single cell left
            if not isinstance(cos_sims_data, list):
                cos_sims_data = [cos_sims_data]

            cos_sims_dict[(perturbed_genes, "cell_emb")] += cos_sims_data

        else:
            for i, cos in enumerate(cos_sims_data.tolist()):
                cos_sims_dict[(gene_list[i], "cell_emb")].append(cos)

        return cos_sims_dict