|
""" |
|
Geneformer in silico perturber. |
|
|
|
Usage: |
|
from geneformer import InSilicoPerturber |
|
isp = InSilicoPerturber(perturb_type="delete", |
|
perturb_rank_shift=None, |
|
genes_to_perturb="all", |
|
combos=0, |
|
anchor_gene=None, |
|
model_type="Pretrained", |
|
num_classes=0, |
|
emb_mode="cell", |
|
cell_emb_style="mean_pool", |
|
filter_data={"cell_type":["cardiomyocyte"]}, |
|
cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]}, |
|
max_ncells=None, |
|
emb_layer=-1, |
|
forward_batch_size=100, |
|
nproc=4) |
|
isp.perturb_data("path/to/model", |
|
"path/to/input_data", |
|
"path/to/output_directory", |
|
"output_prefix") |
|
""" |
|
|
|
|
|
import itertools as it |
|
import logging |
|
import numpy as np |
|
import pickle |
|
import re |
|
import seaborn as sns; sns.set() |
|
import torch |
|
from collections import defaultdict |
|
from datasets import Dataset, load_from_disk |
|
from tqdm.notebook import trange |
|
from transformers import BertForMaskedLM, BertForTokenClassification, BertForSequenceClassification |
|
|
|
from .tokenizer import TOKEN_DICTIONARY_FILE |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def load_and_filter(filter_data, nproc, input_data_file): |
|
data = load_from_disk(input_data_file) |
|
if filter_data is not None: |
|
for key,value in filter_data.items(): |
|
def filter_data_by_criteria(example): |
|
return example[key] in value |
|
data = data.filter(filter_data_by_criteria, num_proc=nproc) |
|
if len(data) == 0: |
|
logger.error( |
|
"No cells remain after filtering. Check filtering criteria.") |
|
raise |
|
data_shuffled = data.shuffle(seed=42) |
|
return data_shuffled |
|
|
|
|
|
def load_model(model_type, num_classes, model_directory): |
|
if model_type == "Pretrained": |
|
model = BertForMaskedLM.from_pretrained(model_directory, |
|
output_hidden_states=True, |
|
output_attentions=False) |
|
elif model_type == "GeneClassifier": |
|
model = BertForTokenClassification.from_pretrained(model_directory, |
|
num_labels=num_classes, |
|
output_hidden_states=True, |
|
output_attentions=False) |
|
elif model_type == "CellClassifier": |
|
model = BertForSequenceClassification.from_pretrained(model_directory, |
|
num_labels=num_classes, |
|
output_hidden_states=True, |
|
output_attentions=False) |
|
|
|
model.eval() |
|
model = model.to("cuda:0") |
|
return model |
|
|
|
def quant_layers(model): |
|
layer_nums = [] |
|
for name, parameter in model.named_parameters(): |
|
if "layer" in name: |
|
layer_nums += [int(name.split("layer.")[1].split(".")[0])] |
|
return int(max(layer_nums))+1 |
|
|
|
def get_model_input_size(model): |
|
return int(re.split("\(|,",str(model.bert.embeddings.position_embeddings))[1]) |
|
|
|
def flatten_list(megalist): |
|
return [item for sublist in megalist for item in sublist] |
|
|
|
def measure_length(example): |
|
example["length"] = len(example["input_ids"]) |
|
return example |
|
|
|
def downsample_and_sort(data_shuffled, max_ncells): |
|
num_cells = len(data_shuffled) |
|
|
|
if max_ncells != None: |
|
num_cells = min(max_ncells,num_cells) |
|
data_subset = data_shuffled.select([i for i in range(num_cells)]) |
|
|
|
data_sorted = data_subset.sort("length",reverse=True) |
|
return data_sorted |
|
|
|
def get_possible_states(cell_states_to_model): |
|
possible_states = [] |
|
for key in ["start_state","goal_state"]: |
|
possible_states += [cell_states_to_model[key]] |
|
possible_states += cell_states_to_model.get("alt_states",[]) |
|
return possible_states |
|
|
|
def forward_pass_single_cell(model, example_cell, layer_to_quant): |
|
example_cell.set_format(type="torch") |
|
input_data = example_cell["input_ids"] |
|
with torch.no_grad(): |
|
outputs = model( |
|
input_ids = input_data.to("cuda") |
|
) |
|
emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) |
|
del outputs |
|
return emb |
|
|
|
def perturb_emb_by_index(emb, indices): |
|
mask = torch.ones(emb.numel(), dtype=torch.bool) |
|
mask[indices] = False |
|
return emb[mask] |
|
|
|
def delete_indices(example): |
|
indices = example["perturb_index"] |
|
if any(isinstance(el, list) for el in indices): |
|
indices = flatten_list(indices) |
|
for index in sorted(indices, reverse=True): |
|
del example["input_ids"][index] |
|
return example |
|
|
|
|
|
def overexpress_indices(example): |
|
indices = example["perturb_index"] |
|
if any(isinstance(el, list) for el in indices): |
|
indices = flatten_list(indices) |
|
for index in sorted(indices, reverse=True): |
|
example["input_ids"].insert(0, example["input_ids"].pop(index)) |
|
return example |
|
|
|
|
|
def overexpress_tokens(example): |
|
|
|
if example["perturb_index"] != [-100]: |
|
example = delete_indices(example) |
|
[example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1]] |
|
return example |
|
|
|
def remove_indices_from_emb(emb, indices_to_remove, gene_dim): |
|
|
|
indices_to_keep = [i for i in range(emb.size()[gene_dim]) if i not in indices_to_remove] |
|
num_dims = emb.dim() |
|
emb_slice = [slice(None) if dim != gene_dim else indices_to_keep for dim in range(num_dims)] |
|
sliced_emb = emb[emb_slice] |
|
return sliced_emb |
|
|
|
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim): |
|
output_batch = torch.stack([ |
|
remove_indices_from_emb(emb_batch[i, :, :], idx, gene_dim-1) for |
|
i, idx in enumerate(list_of_indices_to_remove) |
|
]) |
|
return output_batch |
|
|
|
def make_perturbation_batch(example_cell, |
|
perturb_type, |
|
tokens_to_perturb, |
|
anchor_token, |
|
combo_lvl, |
|
num_proc): |
|
if tokens_to_perturb == "all": |
|
if perturb_type in ["overexpress","activate"]: |
|
range_start = 1 |
|
elif perturb_type in ["delete","inhibit"]: |
|
range_start = 0 |
|
indices_to_perturb = [[i] for i in range(range_start,example_cell["length"][0])] |
|
elif combo_lvl>0 and (anchor_token is not None): |
|
example_input_ids = example_cell["input_ids "][0] |
|
anchor_index = example_input_ids.index(anchor_token[0]) |
|
indices_to_perturb = [sorted([anchor_index,i]) if i!=anchor_index else None for i in range(example_cell["length"][0])] |
|
indices_to_perturb = [item for item in indices_to_perturb if item is not None] |
|
else: |
|
example_input_ids = example_cell["input_ids"][0] |
|
indices_to_perturb = [[example_input_ids.index(token)] if token in example_input_ids else None for token in tokens_to_perturb] |
|
indices_to_perturb = [item for item in indices_to_perturb if item is not None] |
|
|
|
|
|
if combo_lvl>0 and (anchor_token is None): |
|
if tokens_to_perturb != "all": |
|
if len(tokens_to_perturb) == combo_lvl+1: |
|
indices_to_perturb = [list(x) for x in it.combinations(indices_to_perturb, combo_lvl+1)] |
|
else: |
|
all_indices = [[i] for i in range(example_cell["length"][0])] |
|
all_indices = [index for index in all_indices if index not in indices_to_perturb] |
|
indices_to_perturb = [[[j for i in indices_to_perturb for j in i], x] for x in all_indices] |
|
length = len(indices_to_perturb) |
|
perturbation_dataset = Dataset.from_dict({"input_ids": example_cell["input_ids"]*length, |
|
"perturb_index": indices_to_perturb}) |
|
if length<400: |
|
num_proc_i = 1 |
|
else: |
|
num_proc_i = num_proc |
|
if perturb_type == "delete": |
|
perturbation_dataset = perturbation_dataset.map(delete_indices, num_proc=num_proc_i) |
|
elif perturb_type == "overexpress": |
|
perturbation_dataset = perturbation_dataset.map(overexpress_indices, num_proc=num_proc_i) |
|
return perturbation_dataset, indices_to_perturb |
|
|
|
|
|
|
|
|
|
def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group): |
|
all_embs_list = [] |
|
|
|
|
|
if perturb_group == False: |
|
original_emb_list = [original_emb_batch]*len(indices_to_perturb) |
|
|
|
elif perturb_group == True: |
|
original_emb_list = original_emb_batch |
|
|
|
|
|
for i in range(len(original_emb_list)): |
|
original_emb = original_emb_list[i] |
|
indices = indices_to_perturb[i] |
|
if indices == [-100]: |
|
all_embs_list += [original_emb[:]] |
|
continue |
|
emb_list = [] |
|
start = 0 |
|
if any(isinstance(el, list) for el in indices): |
|
indices = flatten_list(indices) |
|
for i in sorted(indices): |
|
emb_list += [original_emb[start:i]] |
|
start = i+1 |
|
emb_list += [original_emb[start:]] |
|
all_embs_list += [torch.cat(emb_list)] |
|
len_set = set([emb.size()[0] for emb in all_embs_list]) |
|
if len(len_set) > 1: |
|
max_len = max(len_set) |
|
all_embs_list = [pad_2d_tensor(emb, None, max_len, 0) for emb in all_embs_list] |
|
return torch.stack(all_embs_list) |
|
|
|
|
|
def get_cell_state_avg_embs(model, |
|
filtered_input_data, |
|
cell_states_to_model, |
|
layer_to_quant, |
|
pad_token_id, |
|
forward_batch_size, |
|
num_proc): |
|
|
|
model_input_size = get_model_input_size(model) |
|
possible_states = get_possible_states(cell_states_to_model) |
|
state_embs_dict = dict() |
|
for possible_state in possible_states: |
|
state_embs_list = [] |
|
original_lens = [] |
|
|
|
def filter_states(example): |
|
state_key = cell_states_to_model["state_key"] |
|
return example[state_key] in [possible_state] |
|
filtered_input_data_state = filtered_input_data.filter(filter_states, num_proc=num_proc) |
|
total_batch_length = len(filtered_input_data_state) |
|
if ((total_batch_length-1)/forward_batch_size).is_integer(): |
|
forward_batch_size = forward_batch_size-1 |
|
max_len = max(filtered_input_data_state["length"]) |
|
for i in range(0, total_batch_length, forward_batch_size): |
|
max_range = min(i+forward_batch_size, total_batch_length) |
|
|
|
state_minibatch = filtered_input_data_state.select([i for i in range(i, max_range)]) |
|
state_minibatch.set_format(type="torch") |
|
|
|
input_data_minibatch = state_minibatch["input_ids"] |
|
original_lens += state_minibatch["length"] |
|
input_data_minibatch = pad_tensor_list(input_data_minibatch, |
|
max_len, |
|
pad_token_id, |
|
model_input_size) |
|
attention_mask = gen_attention_mask(state_minibatch, max_len) |
|
|
|
with torch.no_grad(): |
|
outputs = model( |
|
input_ids = input_data_minibatch.to("cuda"), |
|
attention_mask = attention_mask |
|
) |
|
|
|
state_embs_i = outputs.hidden_states[layer_to_quant] |
|
state_embs_list += [state_embs_i] |
|
del outputs |
|
del state_minibatch |
|
del input_data_minibatch |
|
del attention_mask |
|
del state_embs_i |
|
torch.cuda.empty_cache() |
|
|
|
state_embs = torch.cat(state_embs_list) |
|
avg_state_emb = mean_nonpadding_embs(state_embs, torch.Tensor(original_lens).to("cuda")) |
|
avg_state_emb = torch.mean(avg_state_emb, dim=0, keepdim=True) |
|
state_embs_dict[possible_state] = avg_state_emb |
|
return state_embs_dict |
|
|
|
|
|
def quant_cos_sims(model, |
|
perturb_type, |
|
perturbation_batch, |
|
forward_batch_size, |
|
layer_to_quant, |
|
original_emb, |
|
tokens_to_perturb, |
|
indices_to_perturb, |
|
perturb_group, |
|
cell_states_to_model, |
|
state_embs_dict, |
|
pad_token_id, |
|
model_input_size, |
|
nproc): |
|
cos = torch.nn.CosineSimilarity(dim=2) |
|
total_batch_length = len(perturbation_batch) |
|
if ((total_batch_length-1)/forward_batch_size).is_integer(): |
|
forward_batch_size = forward_batch_size-1 |
|
if cell_states_to_model is None: |
|
if perturb_group == False: |
|
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb, perturb_group) |
|
cos_sims = [] |
|
else: |
|
possible_states = get_possible_states(cell_states_to_model) |
|
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for i in range(len(possible_states))])) |
|
|
|
|
|
perturbation_batch = perturbation_batch.map( |
|
measure_length, num_proc=nproc |
|
) |
|
|
|
for i in range(0, total_batch_length, forward_batch_size): |
|
max_range = min(i+forward_batch_size, total_batch_length) |
|
|
|
perturbation_minibatch = perturbation_batch.select([i for i in range(i, max_range)]) |
|
|
|
minibatch_length_set = set(perturbation_minibatch["length"]) |
|
minibatch_lengths = perturbation_minibatch["length"] |
|
if (len(minibatch_length_set) > 1) or (max(minibatch_length_set) > model_input_size): |
|
needs_pad_or_trunc = True |
|
else: |
|
needs_pad_or_trunc = False |
|
max_len = max(minibatch_length_set) |
|
|
|
if needs_pad_or_trunc == True: |
|
max_len = min(max(minibatch_length_set),model_input_size) |
|
def pad_or_trunc_example(example): |
|
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"], |
|
pad_token_id, |
|
max_len) |
|
return example |
|
perturbation_minibatch = perturbation_minibatch.map(pad_or_trunc_example, num_proc=nproc) |
|
|
|
perturbation_minibatch.set_format(type="torch") |
|
|
|
input_data_minibatch = perturbation_minibatch["input_ids"] |
|
attention_mask = gen_attention_mask(perturbation_minibatch, max_len) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model( |
|
input_ids = input_data_minibatch.to("cuda"), |
|
attention_mask = attention_mask |
|
) |
|
del input_data_minibatch |
|
del perturbation_minibatch |
|
del attention_mask |
|
|
|
if len(indices_to_perturb)>1: |
|
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) |
|
else: |
|
minibatch_emb = outputs.hidden_states[layer_to_quant] |
|
|
|
if perturb_type == "overexpress": |
|
|
|
if perturb_group == False: |
|
overexpressed_to_remove = 1 |
|
if perturb_group == True: |
|
overexpressed_to_remove = len(tokens_to_perturb) |
|
minibatch_emb = minibatch_emb[:,overexpressed_to_remove:,:] |
|
|
|
|
|
if perturb_group == True: |
|
|
|
|
|
|
|
original_minibatch = original_emb.select([i for i in range(i, max_range)]) |
|
original_minibatch_lengths = original_minibatch["length"] |
|
original_minibatch_length_set = set(original_minibatch["length"]) |
|
if perturb_type == "overexpress": |
|
new_max_len = model_input_size - len(tokens_to_perturb) |
|
else: |
|
new_max_len = model_input_size |
|
if (len(original_minibatch_length_set) > 1) or (max(original_minibatch_length_set) > new_max_len): |
|
original_max_len = min(max(original_minibatch_length_set),new_max_len) |
|
def pad_or_trunc_example(example): |
|
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"], pad_token_id, original_max_len) |
|
return example |
|
original_minibatch = original_minibatch.map(pad_or_trunc_example, num_proc=nproc) |
|
original_minibatch.set_format(type="torch") |
|
original_input_data_minibatch = original_minibatch["input_ids"] |
|
attention_mask = gen_attention_mask(original_minibatch, original_max_len) |
|
|
|
with torch.no_grad(): |
|
original_outputs = model( |
|
input_ids = original_input_data_minibatch.to("cuda"), |
|
attention_mask = attention_mask |
|
) |
|
del original_input_data_minibatch |
|
del original_minibatch |
|
del attention_mask |
|
|
|
if len(indices_to_perturb)>1: |
|
original_minibatch_emb = torch.squeeze(original_outputs.hidden_states[layer_to_quant]) |
|
else: |
|
original_minibatch_emb = original_outputs.hidden_states[layer_to_quant] |
|
|
|
|
|
gene_dim = 1 |
|
|
|
if perturb_type != "overexpress": |
|
original_minibatch_emb = remove_indices_from_emb_batch(original_minibatch_emb, |
|
indices_to_perturb, |
|
gene_dim) |
|
|
|
|
|
if cell_states_to_model is None: |
|
if perturb_group == False: |
|
minibatch_comparison = comparison_batch[i:max_range] |
|
elif perturb_group == True: |
|
minibatch_comparison = make_comparison_batch(original_minibatch_emb, |
|
indices_to_perturb, |
|
perturb_group) |
|
|
|
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")] |
|
elif cell_states_to_model is not None: |
|
for state in possible_states: |
|
if perturb_group == False: |
|
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_emb, |
|
minibatch_emb, |
|
state_embs_dict[state], |
|
perturb_group) |
|
elif perturb_group == True: |
|
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_minibatch_emb, |
|
minibatch_emb, |
|
state_embs_dict[state], |
|
perturb_group, |
|
torch.tensor(original_minibatch_lengths, device="cuda"), |
|
torch.tensor(minibatch_lengths, device="cuda")) |
|
del outputs |
|
del minibatch_emb |
|
if cell_states_to_model is None: |
|
del minibatch_comparison |
|
torch.cuda.empty_cache() |
|
if cell_states_to_model is None: |
|
cos_sims_stack = torch.cat(cos_sims) |
|
return cos_sims_stack |
|
else: |
|
for state in possible_states: |
|
cos_sims_vs_alt_dict[state] = torch.cat(cos_sims_vs_alt_dict[state]) |
|
return cos_sims_vs_alt_dict |
|
|
|
|
|
def cos_sim_shift(original_emb, |
|
minibatch_emb, |
|
end_emb, |
|
perturb_group, |
|
original_minibatch_lengths = None, |
|
minibatch_lengths = None): |
|
cos = torch.nn.CosineSimilarity(dim=2) |
|
if not perturb_group: |
|
original_emb = torch.mean(original_emb,dim=0,keepdim=True) |
|
original_emb = original_emb[None, :] |
|
origin_v_end = torch.squeeze(cos(original_emb, end_emb)) |
|
else: |
|
if original_emb.size() != minibatch_emb.size(): |
|
logger.error( |
|
f"Embeddings are not the same dimensions. " \ |
|
f"original_emb is {original_emb.size()}. " \ |
|
f"minibatch_emb is {minibatch_emb.size()}. " |
|
) |
|
raise |
|
|
|
if original_minibatch_lengths is not None: |
|
original_emb = mean_nonpadding_embs(original_emb, original_minibatch_lengths) |
|
|
|
|
|
|
|
end_emb = torch.unsqueeze(end_emb, 1) |
|
origin_v_end = cos(original_emb, end_emb) |
|
origin_v_end = torch.squeeze(origin_v_end) |
|
if minibatch_lengths is not None: |
|
perturb_emb = mean_nonpadding_embs(minibatch_emb, minibatch_lengths) |
|
else: |
|
perturb_emb = torch.mean(minibatch_emb,dim=1,keepdim=True) |
|
|
|
perturb_v_end = cos(perturb_emb, end_emb) |
|
perturb_v_end = torch.squeeze(perturb_v_end) |
|
return [(perturb_v_end-origin_v_end).to("cpu")] |
|
|
|
def pad_list(input_ids, pad_token_id, max_len): |
|
input_ids = np.pad(input_ids, |
|
(0, max_len-len(input_ids)), |
|
mode='constant', constant_values=pad_token_id) |
|
return input_ids |
|
|
|
def pad_tensor(tensor, pad_token_id, max_len): |
|
tensor = torch.nn.functional.pad(tensor, pad=(0, |
|
max_len - tensor.numel()), |
|
mode='constant', |
|
value=pad_token_id) |
|
return tensor |
|
|
|
def pad_2d_tensor(tensor, pad_token_id, max_len, dim): |
|
if dim == 0: |
|
pad = (0, 0, 0, max_len - tensor.size()[dim]) |
|
elif dim == 1: |
|
pad = (0, max_len - tensor.size()[dim], 0, 0) |
|
tensor = torch.nn.functional.pad(tensor, pad=pad, |
|
mode='constant', |
|
value=pad_token_id) |
|
return tensor |
|
|
|
def pad_or_truncate_encoding(encoding, pad_token_id, max_len): |
|
if isinstance(encoding, torch.Tensor): |
|
encoding_len = tensor.size()[0] |
|
elif isinstance(encoding, list): |
|
encoding_len = len(encoding) |
|
if encoding_len > max_len: |
|
encoding = encoding[0:max_len] |
|
elif encoding_len < max_len: |
|
if isinstance(encoding, torch.Tensor): |
|
encoding = pad_tensor(encoding, pad_token_id, max_len) |
|
elif isinstance(encoding, list): |
|
encoding = pad_list(encoding, pad_token_id, max_len) |
|
return encoding |
|
|
|
|
|
def pad_tensor_list(tensor_list, dynamic_or_constant, pad_token_id, model_input_size): |
|
|
|
|
|
if dynamic_or_constant == "dynamic": |
|
max_len = max([tensor.squeeze().numel() for tensor in tensor_list]) |
|
elif type(dynamic_or_constant) == int: |
|
max_len = dynamic_or_constant |
|
else: |
|
max_len = model_input_size |
|
logger.warning( |
|
"If padding style is constant, must provide integer value. " \ |
|
f"Setting padding to max input size {model_input_size}.") |
|
|
|
|
|
tensor_list = [pad_tensor(tensor, pad_token_id, max_len) for tensor in tensor_list] |
|
|
|
|
|
return torch.stack(tensor_list) |
|
|
|
def gen_attention_mask(minibatch_encoding, max_len = None): |
|
if max_len == None: |
|
max_len = max(minibatch_encoding["length"]) |
|
original_lens = minibatch_encoding["length"] |
|
attention_mask = [[1]*original_len |
|
+[0]*(max_len - original_len) |
|
if original_len <= max_len |
|
else [1]*max_len |
|
for original_len in original_lens] |
|
return torch.tensor(attention_mask).to("cuda") |
|
|
|
|
|
def mean_nonpadding_embs(embs, original_lens): |
|
|
|
mask = torch.arange(embs.size(1)).unsqueeze(0).to("cuda") < original_lens.unsqueeze(1) |
|
|
|
|
|
mask = mask.unsqueeze(2).expand_as(embs) |
|
|
|
|
|
masked_embs = embs * mask.float() |
|
|
|
|
|
mean_embs = masked_embs.sum(1) / original_lens.view(-1, 1).float() |
|
return mean_embs |
|
|
|
class InSilicoPerturber: |
|
valid_option_dict = { |
|
"perturb_type": {"delete","overexpress","inhibit","activate"}, |
|
"perturb_rank_shift": {None, 1, 2, 3}, |
|
"genes_to_perturb": {"all", list}, |
|
"combos": {0, 1}, |
|
"anchor_gene": {None, str}, |
|
"model_type": {"Pretrained","GeneClassifier","CellClassifier"}, |
|
"num_classes": {int}, |
|
"emb_mode": {"cell","cell_and_gene"}, |
|
"cell_emb_style": {"mean_pool"}, |
|
"filter_data": {None, dict}, |
|
"cell_states_to_model": {None, dict}, |
|
"max_ncells": {None, int}, |
|
"inds_to_perturb": {"all", dict}, |
|
"emb_layer": {-1, 0}, |
|
"forward_batch_size": {int}, |
|
"nproc": {int}, |
|
} |
|
def __init__( |
|
self, |
|
perturb_type="delete", |
|
perturb_rank_shift=None, |
|
genes_to_perturb="all", |
|
combos=0, |
|
anchor_gene=None, |
|
model_type="Pretrained", |
|
num_classes=0, |
|
emb_mode="cell", |
|
cell_emb_style="mean_pool", |
|
filter_data=None, |
|
cell_states_to_model=None, |
|
max_ncells=None, |
|
inds_to_perturb="all", |
|
emb_layer=-1, |
|
forward_batch_size=100, |
|
nproc=4, |
|
token_dictionary_file=TOKEN_DICTIONARY_FILE, |
|
): |
|
""" |
|
Initialize in silico perturber. |
|
|
|
Parameters |
|
---------- |
|
perturb_type : {"delete","overexpress","inhibit","activate"} |
|
Type of perturbation. |
|
"delete": delete gene from rank value encoding |
|
"overexpress": move gene to front of rank value encoding |
|
"inhibit": move gene to lower quartile of rank value encoding |
|
"activate": move gene to higher quartile of rank value encoding |
|
perturb_rank_shift : None, {1,2,3} |
|
Number of quartiles by which to shift rank of gene. |
|
For example, if perturb_type="activate" and perturb_rank_shift=1: |
|
genes in 4th quartile will move to middle of 3rd quartile. |
|
genes in 3rd quartile will move to middle of 2nd quartile. |
|
genes in 2nd quartile will move to middle of 1st quartile. |
|
genes in 1st quartile will move to front of rank value encoding. |
|
For example, if perturb_type="inhibit" and perturb_rank_shift=2: |
|
genes in 1st quartile will move to middle of 3rd quartile. |
|
genes in 2nd quartile will move to middle of 4th quartile. |
|
genes in 3rd or 4th quartile will move to bottom of rank value encoding. |
|
genes_to_perturb : "all", list |
|
Default is perturbing each gene detected in each cell in the dataset. |
|
Otherwise, may provide a list of ENSEMBL IDs of genes to perturb. |
|
If gene list is provided, then perturber will only test perturbing them all together |
|
(rather than testing each possible combination of the provided genes). |
|
combos : {0,1} |
|
Whether to perturb genes individually (0) or in pairs (1). |
|
anchor_gene : None, str |
|
ENSEMBL ID of gene to use as anchor in combination perturbations. |
|
For example, if combos=1 and anchor_gene="ENSG00000148400": |
|
anchor gene will be perturbed in combination with each other gene. |
|
model_type : {"Pretrained","GeneClassifier","CellClassifier"} |
|
Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier. |
|
num_classes : int |
|
If model is a gene or cell classifier, specify number of classes it was trained to classify. |
|
For the pretrained Geneformer model, number of classes is 0 as it is not a classifier. |
|
emb_mode : {"cell","cell_and_gene"} |
|
Whether to output impact of perturbation on cell and/or gene embeddings. |
|
cell_emb_style : "mean_pool" |
|
Method for summarizing cell embeddings. |
|
Currently only option is mean pooling of gene embeddings for given cell. |
|
filter_data : None, dict |
|
Default is to use all input data for in silico perturbation study. |
|
Otherwise, dictionary specifying .dataset column name and list of values to filter by. |
|
cell_states_to_model: None, dict |
|
Cell states to model if testing perturbations that achieve goal state change. |
|
Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states |
|
state_key: key specifying name of column in .dataset that defines the start/goal states |
|
start_state: value in the state_key column that specifies the start state |
|
goal_state: value in the state_key column taht specifies the goal end state |
|
alt_states: list of values in the state_key column that specify the alternate end states |
|
For example: {"state_key": "disease", |
|
"start_state": "dcm", |
|
"goal_state": "nf", |
|
"alt_states": ["hcm", "other1", "other2"]} |
|
max_ncells : None, int |
|
Maximum number of cells to test. |
|
If None, will test all cells. |
|
inds_to_perturb : "all", list |
|
Default is perturbing each cell in the dataset. |
|
Otherwise, may provide a dict of indices of genes to perturb with keys start_ind and end_ind. |
|
start_ind: the first index to perturb. |
|
end_ind: the last index to perturb (exclusive). |
|
Indices will be selected *after* the filter_data criteria and sorting. |
|
Useful for splitting extremely large datasets across separate GPUs. |
|
emb_layer : {-1, 0} |
|
Embedding layer to use for quantification. |
|
-1: 2nd to last layer (recommended for pretrained Geneformer) |
|
0: last layer (recommended for cell classifier fine-tuned for disease state) |
|
forward_batch_size : int |
|
Batch size for forward pass. |
|
nproc : int |
|
Number of CPU processes to use. |
|
token_dictionary_file : Path |
|
Path to pickle file containing token dictionary (Ensembl ID:token). |
|
""" |
|
|
|
self.perturb_type = perturb_type |
|
self.perturb_rank_shift = perturb_rank_shift |
|
self.genes_to_perturb = genes_to_perturb |
|
self.combos = combos |
|
self.anchor_gene = anchor_gene |
|
if self.genes_to_perturb == "all": |
|
self.perturb_group = False |
|
else: |
|
self.perturb_group = True |
|
if (self.anchor_gene != None) or (self.combos != 0): |
|
self.anchor_gene = None |
|
self.combos = 0 |
|
logger.warning( |
|
"anchor_gene set to None and combos set to 0. " \ |
|
"If providing list of genes to perturb, " \ |
|
"list of genes_to_perturb will be perturbed together, "\ |
|
"without anchor gene or combinations.") |
|
self.model_type = model_type |
|
self.num_classes = num_classes |
|
self.emb_mode = emb_mode |
|
self.cell_emb_style = cell_emb_style |
|
self.filter_data = filter_data |
|
self.cell_states_to_model = cell_states_to_model |
|
self.max_ncells = max_ncells |
|
self.inds_to_perturb = inds_to_perturb |
|
self.emb_layer = emb_layer |
|
self.forward_batch_size = forward_batch_size |
|
self.nproc = nproc |
|
|
|
self.validate_options() |
|
|
|
|
|
with open(token_dictionary_file, "rb") as f: |
|
self.gene_token_dict = pickle.load(f) |
|
|
|
self.pad_token_id = self.gene_token_dict.get("<pad>") |
|
|
|
if self.anchor_gene is None: |
|
self.anchor_token = None |
|
else: |
|
try: |
|
self.anchor_token = [self.gene_token_dict[self.anchor_gene]] |
|
except KeyError: |
|
logger.error( |
|
f"Anchor gene {self.anchor_gene} not in token dictionary." |
|
) |
|
raise |
|
|
|
if self.genes_to_perturb == "all": |
|
self.tokens_to_perturb = "all" |
|
else: |
|
missing_genes = [gene for gene in self.genes_to_perturb if gene not in self.gene_token_dict.keys()] |
|
if len(missing_genes) == len(self.genes_to_perturb): |
|
logger.error( |
|
"None of the provided genes to perturb are in token dictionary." |
|
) |
|
raise |
|
elif len(missing_genes)>0: |
|
logger.warning( |
|
f"Genes to perturb {missing_genes} are not in token dictionary.") |
|
self.tokens_to_perturb = [self.gene_token_dict.get(gene) for gene in self.genes_to_perturb] |
|
|
|
def validate_options(self): |
|
|
|
if self.perturb_type in ["inhibit", "activate"]: |
|
logger.error( |
|
"In silico inhibition and activation currently under development. " \ |
|
"Current valid options for 'perturb_type': 'delete' or 'overexpress'" |
|
) |
|
raise |
|
|
|
|
|
for attr_name,valid_options in self.valid_option_dict.items(): |
|
attr_value = self.__dict__[attr_name] |
|
if type(attr_value) not in {list, dict}: |
|
if attr_value in valid_options: |
|
continue |
|
if attr_name in ["anchor_gene"]: |
|
if type(attr_name) in {str}: |
|
continue |
|
valid_type = False |
|
for option in valid_options: |
|
if (option in [int,list,dict]) and isinstance(attr_value, option): |
|
valid_type = True |
|
break |
|
if valid_type: |
|
continue |
|
logger.error( |
|
f"Invalid option for {attr_name}. " \ |
|
f"Valid options for {attr_name}: {valid_options}" |
|
) |
|
raise |
|
|
|
if self.perturb_type in ["delete","overexpress"]: |
|
if self.perturb_rank_shift is not None: |
|
if self.perturb_type == "delete": |
|
logger.warning( |
|
"perturb_rank_shift set to None. " \ |
|
"If perturb type is delete then gene is deleted entirely " \ |
|
"rather than shifted by quartile") |
|
elif self.perturb_type == "overexpress": |
|
logger.warning( |
|
"perturb_rank_shift set to None. " \ |
|
"If perturb type is overexpress then gene is moved to front " \ |
|
"of rank value encoding rather than shifted by quartile") |
|
self.perturb_rank_shift = None |
|
|
|
if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"): |
|
self.emb_mode = "cell" |
|
logger.warning( |
|
"emb_mode set to 'cell'. " \ |
|
"Currently, analysis with anchor gene " \ |
|
"only outputs effect on cell embeddings.") |
|
|
|
if self.cell_states_to_model is not None: |
|
if len(self.cell_states_to_model.items()) == 1: |
|
logger.warning( |
|
"The single value dictionary for cell_states_to_model will be " \ |
|
"replaced with a dictionary with named keys for start, goal, and alternate states. " \ |
|
"Please specify state_key, start_state, goal_state, and alt_states " \ |
|
"in the cell_states_to_model dictionary for future use. " \ |
|
"For example, cell_states_to_model={" \ |
|
"'state_key': 'disease', " \ |
|
"'start_state': 'dcm', " \ |
|
"'goal_state': 'nf', " \ |
|
"'alt_states': ['hcm', 'other1', 'other2']}" |
|
) |
|
for key,value in self.cell_states_to_model.items(): |
|
if (len(value) == 3) and isinstance(value, tuple): |
|
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list): |
|
if len(value[0]) == 1 and len(value[1]) == 1: |
|
all_values = value[0]+value[1]+value[2] |
|
if len(all_values) == len(set(all_values)): |
|
continue |
|
|
|
state_values = flatten_list(list(self.cell_states_to_model.values())) |
|
self.cell_states_to_model = { |
|
"state_key": list(self.cell_states_to_model.keys())[0], |
|
"start_state": state_values[0][0], |
|
"goal_state": state_values[1][0], |
|
"alt_states": state_values[2:][0] |
|
} |
|
elif set(self.cell_states_to_model.keys()) == {"state_key", "start_state", "goal_state", "alt_states"}: |
|
if (self.cell_states_to_model["state_key"] is None) \ |
|
or (self.cell_states_to_model["start_state"] is None) \ |
|
or (self.cell_states_to_model["goal_state"] is None): |
|
logger.error( |
|
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model.") |
|
raise |
|
|
|
if self.cell_states_to_model["start_state"] == self.cell_states_to_model["goal_state"]: |
|
logger.error( |
|
"All states must be unique.") |
|
raise |
|
|
|
if self.cell_states_to_model["alt_states"] is not None: |
|
if type(self.cell_states_to_model["alt_states"]) is not list: |
|
logger.error( |
|
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)." |
|
) |
|
raise |
|
if len(self.cell_states_to_model["alt_states"])!= len(set(self.cell_states_to_model["alt_states"])): |
|
logger.error( |
|
"All states must be unique.") |
|
raise |
|
|
|
else: |
|
logger.error( |
|
"cell_states_to_model must only have the following four keys: " \ |
|
"'state_key', 'start_state', 'goal_state', 'alt_states'." \ |
|
"For example, cell_states_to_model={" \ |
|
"'state_key': 'disease', " \ |
|
"'start_state': 'dcm', " \ |
|
"'goal_state': 'nf', " \ |
|
"'alt_states': ['hcm', 'other1', 'other2']}" |
|
) |
|
raise |
|
|
|
if self.anchor_gene is not None: |
|
self.anchor_gene = None |
|
logger.warning( |
|
"anchor_gene set to None. " \ |
|
"Currently, anchor gene not available " \ |
|
"when modeling multiple cell states.") |
|
|
|
if self.perturb_type in ["inhibit","activate"]: |
|
if self.perturb_rank_shift is None: |
|
logger.error( |
|
"If perturb_type is inhibit or activate then " \ |
|
"quartile to shift by must be specified.") |
|
raise |
|
|
|
if self.filter_data is not None: |
|
for key,value in self.filter_data.items(): |
|
if type(value) != list: |
|
self.filter_data[key] = [value] |
|
logger.warning( |
|
"Values in filter_data dict must be lists. " \ |
|
f"Changing {key} value to list ([{value}]).") |
|
|
|
if self.inds_to_perturb != "all": |
|
if set(self.inds_to_perturb.keys()) != {"start", "end"}: |
|
logger.error( |
|
"If inds_to_perturb is a dictionary, keys must be 'start' and 'end'." |
|
) |
|
raise |
|
if self.inds_to_perturb["start"] < 0 or self.inds_to_perturb["end"] < 0: |
|
logger.error( |
|
'inds_to_perturb must be positive.' |
|
) |
|
raise |
|
|
|
def perturb_data(self, |
|
model_directory, |
|
input_data_file, |
|
output_directory, |
|
output_prefix): |
|
""" |
|
Perturb genes in input data and save as results in output_directory. |
|
|
|
Parameters |
|
---------- |
|
model_directory : Path |
|
Path to directory containing model |
|
input_data_file : Path |
|
Path to directory containing .dataset inputs |
|
output_directory : Path |
|
Path to directory where perturbation data will be saved as batched pickle files |
|
output_prefix : str |
|
Prefix for output files |
|
""" |
|
|
|
filtered_input_data = load_and_filter(self.filter_data, self.nproc, input_data_file) |
|
model = load_model(self.model_type, self.num_classes, model_directory) |
|
layer_to_quant = quant_layers(model)+self.emb_layer |
|
|
|
if self.cell_states_to_model is None: |
|
state_embs_dict = None |
|
else: |
|
|
|
state_name = self.cell_states_to_model["state_key"] |
|
state_values = filtered_input_data[state_name] |
|
for value in get_possible_states(self.cell_states_to_model): |
|
if value not in state_values: |
|
logger.error( |
|
f"{value} is not present in the dataset's {state_name} attribute.") |
|
raise |
|
|
|
downsampled_data = downsample_and_sort(filtered_input_data, self.max_ncells) |
|
state_embs_dict = get_cell_state_avg_embs(model, |
|
downsampled_data, |
|
self.cell_states_to_model, |
|
layer_to_quant, |
|
self.pad_token_id, |
|
self.forward_batch_size, |
|
self.nproc) |
|
|
|
start_state = self.cell_states_to_model["start_state"] |
|
def filter_for_origin(example): |
|
return example[state_name] in [start_state] |
|
|
|
filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=self.nproc) |
|
|
|
self.in_silico_perturb(model, |
|
filtered_input_data, |
|
layer_to_quant, |
|
state_embs_dict, |
|
output_directory, |
|
output_prefix) |
|
|
|
|
|
def in_silico_perturb(self, |
|
model, |
|
filtered_input_data, |
|
layer_to_quant, |
|
state_embs_dict, |
|
output_directory, |
|
output_prefix): |
|
|
|
output_path_prefix = f"{output_directory}in_silico_{self.perturb_type}_{output_prefix}_dict_1Kbatch" |
|
model_input_size = get_model_input_size(model) |
|
|
|
|
|
if self.anchor_token is not None: |
|
def if_has_tokens_to_perturb(example): |
|
return (len(set(example["input_ids"]).intersection(self.anchor_token))==len(self.anchor_token)) |
|
filtered_input_data = filtered_input_data.filter(if_has_tokens_to_perturb, num_proc=self.nproc) |
|
if len(filtered_input_data) == 0: |
|
logger.error( |
|
"No cells in dataset contain anchor gene.") |
|
raise |
|
else: |
|
logger.info(f"# cells with anchor gene: {len(filtered_input_data)}") |
|
|
|
if (self.tokens_to_perturb != "all") and (self.perturb_type != "overexpress"): |
|
|
|
min_genes = len(self.tokens_to_perturb) |
|
|
|
def if_has_tokens_to_perturb(example): |
|
return (len(set(example["input_ids"]).intersection(self.tokens_to_perturb))>=min_genes) |
|
filtered_input_data = filtered_input_data.filter(if_has_tokens_to_perturb, num_proc=self.nproc) |
|
if len(filtered_input_data) == 0: |
|
logger.error( |
|
"No cells in dataset contain all genes to perturb as a group.") |
|
raise |
|
|
|
cos_sims_dict = defaultdict(list) |
|
pickle_batch = -1 |
|
filtered_input_data = downsample_and_sort(filtered_input_data, self.max_ncells) |
|
if self.inds_to_perturb != "all": |
|
if self.inds_to_perturb["start"] >= len(filtered_input_data): |
|
logger.error("inds_to_perturb['start'] is larger than the filtered dataset.") |
|
raise |
|
if self.inds_to_perturb["end"] > len(filtered_input_data): |
|
logger.warning("inds_to_perturb['end'] is larger than the filtered dataset. \ |
|
Setting to the end of the filtered dataset.") |
|
self.inds_to_perturb["end"] = len(filtered_input_data) |
|
filtered_input_data = filtered_input_data.select([i for i in range(self.inds_to_perturb["start"], self.inds_to_perturb["end"])]) |
|
|
|
|
|
if self.perturb_group == True: |
|
|
|
def make_group_perturbation_batch(example): |
|
example_input_ids = example["input_ids"] |
|
example["tokens_to_perturb"] = self.tokens_to_perturb |
|
indices_to_perturb = [example_input_ids.index(token) if token in example_input_ids else None for token in self.tokens_to_perturb] |
|
indices_to_perturb = [item for item in indices_to_perturb if item is not None] |
|
if len(indices_to_perturb) > 0: |
|
example["perturb_index"] = indices_to_perturb |
|
else: |
|
|
|
example["perturb_index"] = [-100] |
|
if self.perturb_type == "delete": |
|
example = delete_indices(example) |
|
elif self.perturb_type == "overexpress": |
|
example = overexpress_tokens(example) |
|
return example |
|
|
|
perturbation_batch = filtered_input_data.map(make_group_perturbation_batch, num_proc=self.nproc) |
|
indices_to_perturb = perturbation_batch["perturb_index"] |
|
|
|
cos_sims_data = quant_cos_sims(model, |
|
self.perturb_type, |
|
perturbation_batch, |
|
self.forward_batch_size, |
|
layer_to_quant, |
|
filtered_input_data, |
|
self.tokens_to_perturb, |
|
indices_to_perturb, |
|
self.perturb_group, |
|
self.cell_states_to_model, |
|
state_embs_dict, |
|
self.pad_token_id, |
|
model_input_size, |
|
self.nproc) |
|
|
|
perturbed_genes = tuple(self.tokens_to_perturb) |
|
original_lengths = filtered_input_data["length"] |
|
if self.cell_states_to_model is None: |
|
|
|
|
|
|
|
cos_sims_data = cos_sims_data.to("cuda") |
|
max_padded_len = cos_sims_data.shape[1] |
|
for j in range(cos_sims_data.shape[0]): |
|
|
|
original_length = original_lengths[j] |
|
gene_list = filtered_input_data[j]["input_ids"] |
|
indices_removed = indices_to_perturb[j] |
|
padding_to_remove = max_padded_len - (original_length \ |
|
- len(self.tokens_to_perturb) \ |
|
- len(indices_removed)) |
|
nonpadding_cos_sims_data = cos_sims_data[j][:-padding_to_remove] |
|
cell_cos_sim = torch.mean(nonpadding_cos_sims_data).item() |
|
cos_sims_dict[(perturbed_genes, "cell_emb")] += [cell_cos_sim] |
|
|
|
if self.emb_mode == "cell_and_gene": |
|
for k in range(cos_sims_data.shape[1]): |
|
cos_sim_value = nonpadding_cos_sims_data[k] |
|
affected_gene = gene_list[k].item() |
|
cos_sims_dict[(perturbed_genes, affected_gene)] += [cos_sim_value.item()] |
|
else: |
|
|
|
|
|
|
|
origin_state_key = self.cell_states_to_model["start_state"] |
|
cos_sims_origin = cos_sims_data[origin_state_key] |
|
for j in range(cos_sims_origin.shape[0]): |
|
data_list = [] |
|
for data in list(cos_sims_data.values()): |
|
data_item = data.to("cuda") |
|
data_list += [data_item[j].item()] |
|
cos_sims_dict[(perturbed_genes, "cell_emb")] += [tuple(data_list)] |
|
|
|
with open(f"{output_path_prefix}_raw.pickle", "wb") as fp: |
|
pickle.dump(cos_sims_dict, fp) |
|
|
|
|
|
if self.perturb_group == False: |
|
|
|
for i in trange(len(filtered_input_data)): |
|
example_cell = filtered_input_data.select([i]) |
|
original_emb = forward_pass_single_cell(model, example_cell, layer_to_quant) |
|
gene_list = torch.squeeze(example_cell["input_ids"]) |
|
|
|
|
|
example_cell = filtered_input_data.select([i]) |
|
|
|
if self.anchor_token is None: |
|
for combo_lvl in range(self.combos+1): |
|
perturbation_batch, indices_to_perturb = make_perturbation_batch(example_cell, |
|
self.perturb_type, |
|
self.tokens_to_perturb, |
|
self.anchor_token, |
|
combo_lvl, |
|
self.nproc) |
|
cos_sims_data = quant_cos_sims(model, |
|
self.perturb_type, |
|
perturbation_batch, |
|
self.forward_batch_size, |
|
layer_to_quant, |
|
original_emb, |
|
self.tokens_to_perturb, |
|
indices_to_perturb, |
|
self.perturb_group, |
|
self.cell_states_to_model, |
|
state_embs_dict, |
|
self.pad_token_id, |
|
model_input_size, |
|
self.nproc) |
|
|
|
if self.cell_states_to_model is None: |
|
|
|
|
|
|
|
cos_sims_data = cos_sims_data.to("cuda") |
|
for j in range(cos_sims_data.shape[0]): |
|
if self.tokens_to_perturb != "all": |
|
j_index = torch.tensor(indices_to_perturb[j]) |
|
if j_index.shape[0]>1: |
|
j_index = torch.squeeze(j_index) |
|
else: |
|
j_index = torch.tensor([j]) |
|
perturbed_gene = torch.index_select(gene_list, 0, j_index) |
|
|
|
if perturbed_gene.shape[0]==1: |
|
perturbed_gene = perturbed_gene.item() |
|
elif perturbed_gene.shape[0]>1: |
|
perturbed_gene = tuple(perturbed_gene.tolist()) |
|
|
|
cell_cos_sim = torch.mean(cos_sims_data[j]).item() |
|
cos_sims_dict[(perturbed_gene, "cell_emb")] += [cell_cos_sim] |
|
|
|
|
|
|
|
if self.emb_mode == "cell_and_gene": |
|
for k in range(cos_sims_data.shape[1]): |
|
cos_sim_value = cos_sims_data[j][k] |
|
affected_gene = gene_list[k].item() |
|
cos_sims_dict[(perturbed_gene, affected_gene)] += [cos_sim_value.item()] |
|
else: |
|
|
|
|
|
|
|
origin_state_key = self.cell_states_to_model["start_state"] |
|
cos_sims_origin = cos_sims_data[origin_state_key] |
|
|
|
for j in range(cos_sims_origin.shape[0]): |
|
if (self.tokens_to_perturb != "all") or (combo_lvl>0): |
|
j_index = torch.tensor(indices_to_perturb[j]) |
|
if j_index.shape[0]>1: |
|
j_index = torch.squeeze(j_index) |
|
else: |
|
j_index = torch.tensor([j]) |
|
perturbed_gene = torch.index_select(gene_list, 0, j_index) |
|
|
|
if perturbed_gene.shape[0]==1: |
|
perturbed_gene = perturbed_gene.item() |
|
elif perturbed_gene.shape[0]>1: |
|
perturbed_gene = tuple(perturbed_gene.tolist()) |
|
|
|
data_list = [] |
|
for data in list(cos_sims_data.values()): |
|
data_item = data.to("cuda") |
|
cell_data = torch.mean(data_item[j]).item() |
|
data_list += [cell_data] |
|
cos_sims_dict[(perturbed_gene, "cell_emb")] += [tuple(data_list)] |
|
|
|
elif self.anchor_token is not None: |
|
perturbation_batch, indices_to_perturb = make_perturbation_batch(example_cell, |
|
self.perturb_type, |
|
self.tokens_to_perturb, |
|
None, |
|
0, |
|
self.nproc) |
|
cos_sims_data = quant_cos_sims(model, |
|
self.perturb_type, |
|
perturbation_batch, |
|
self.forward_batch_size, |
|
layer_to_quant, |
|
original_emb, |
|
self.tokens_to_perturb, |
|
indices_to_perturb, |
|
self.perturb_group, |
|
self.cell_states_to_model, |
|
state_embs_dict, |
|
self.pad_token_id, |
|
model_input_size, |
|
self.nproc) |
|
cos_sims_data = cos_sims_data.to("cuda") |
|
|
|
combo_perturbation_batch, combo_indices_to_perturb = make_perturbation_batch(example_cell, |
|
self.perturb_type, |
|
self.tokens_to_perturb, |
|
self.anchor_token, |
|
1, |
|
self.nproc) |
|
combo_cos_sims_data = quant_cos_sims(model, |
|
self.perturb_type, |
|
combo_perturbation_batch, |
|
self.forward_batch_size, |
|
layer_to_quant, |
|
original_emb, |
|
self.tokens_to_perturb, |
|
combo_indices_to_perturb, |
|
self.perturb_group, |
|
self.cell_states_to_model, |
|
state_embs_dict, |
|
self.pad_token_id, |
|
model_input_size, |
|
self.nproc) |
|
combo_cos_sims_data = combo_cos_sims_data.to("cuda") |
|
|
|
|
|
|
|
anchor_index = example_cell["input_ids"][0].index(self.anchor_token[0]) |
|
anchor_cell_cos_sim = torch.mean(cos_sims_data[anchor_index]).item() |
|
non_anchor_indices = [k for k in range(cos_sims_data.shape[0]) if k != anchor_index] |
|
cos_sims_data = cos_sims_data[non_anchor_indices,:] |
|
|
|
for j in range(cos_sims_data.shape[0]): |
|
|
|
if j<anchor_index: |
|
j_index = torch.tensor([j]) |
|
else: |
|
j_index = torch.tensor([j+1]) |
|
|
|
perturbed_gene = torch.index_select(gene_list, 0, j_index) |
|
perturbed_gene = perturbed_gene.item() |
|
|
|
cell_cos_sim = torch.mean(cos_sims_data[j]).item() |
|
combo_cos_sim = torch.mean(combo_cos_sims_data[j]).item() |
|
cos_sims_dict[(perturbed_gene, "cell_emb")] += [(anchor_cell_cos_sim, |
|
cell_cos_sim, |
|
combo_cos_sim)] |
|
|
|
|
|
if (i/100).is_integer(): |
|
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp: |
|
pickle.dump(cos_sims_dict, fp) |
|
|
|
if (i/1000).is_integer(): |
|
pickle_batch = pickle_batch+1 |
|
|
|
del perturbed_gene |
|
del cos_sims_data |
|
if self.cell_states_to_model is None: |
|
del cell_cos_sim |
|
if self.cell_states_to_model is not None: |
|
del cell_data |
|
del data_list |
|
elif self.anchor_token is None: |
|
if self.emb_mode == "cell_and_gene": |
|
del affected_gene |
|
del cos_sim_value |
|
else: |
|
del combo_cos_sim |
|
del combo_cos_sims_data |
|
|
|
del cos_sims_dict |
|
cos_sims_dict = defaultdict(list) |
|
torch.cuda.empty_cache() |
|
|
|
|
|
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp: |
|
pickle.dump(cos_sims_dict, fp) |