Christina Theodoris
commited on
Commit
•
d154fee
1
Parent(s):
1786b44
Add function to extract and plot cell embeddings
Browse files
examples/extract_and_plot_cell_embeddings.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
geneformer/__init__.py
CHANGED
@@ -7,5 +7,6 @@ from .tokenizer import TranscriptomeTokenizer
|
|
7 |
from .pretrainer import GeneformerPretrainer
|
8 |
from .collator_for_classification import DataCollatorForGeneClassification
|
9 |
from .collator_for_classification import DataCollatorForCellClassification
|
|
|
10 |
from .in_silico_perturber import InSilicoPerturber
|
11 |
from .in_silico_perturber_stats import InSilicoPerturberStats
|
|
|
7 |
from .pretrainer import GeneformerPretrainer
|
8 |
from .collator_for_classification import DataCollatorForGeneClassification
|
9 |
from .collator_for_classification import DataCollatorForCellClassification
|
10 |
+
from .emb_extractor import EmbExtractor
|
11 |
from .in_silico_perturber import InSilicoPerturber
|
12 |
from .in_silico_perturber_stats import InSilicoPerturberStats
|
geneformer/emb_extractor.py
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Geneformer embedding extractor.
|
3 |
+
|
4 |
+
Usage:
|
5 |
+
from geneformer import EmbExtractor
|
6 |
+
embex = EmbExtractor(model_type="CellClassifier",
|
7 |
+
num_classes=3,
|
8 |
+
emb_mode="cell",
|
9 |
+
cell_emb_style="mean_pool",
|
10 |
+
filter_data={"cell_type":["cardiomyocyte"]},
|
11 |
+
max_ncells=1000,
|
12 |
+
max_ncells_to_plot=1000,
|
13 |
+
emb_layer=-1,
|
14 |
+
emb_label=["disease","cell_type"],
|
15 |
+
labels_to_plot=["disease","cell_type"],
|
16 |
+
forward_batch_size=100,
|
17 |
+
nproc=16)
|
18 |
+
embs = embex.extract_embs("path/to/model",
|
19 |
+
"path/to/input_data",
|
20 |
+
"path/to/output_directory",
|
21 |
+
"output_prefix")
|
22 |
+
embex.plot_embs(embs=embs,
|
23 |
+
plot_style="heatmap",
|
24 |
+
output_directory="path/to/output_directory",
|
25 |
+
output_prefix="output_prefix")
|
26 |
+
|
27 |
+
"""
|
28 |
+
|
29 |
+
# imports
|
30 |
+
import logging
|
31 |
+
import anndata
|
32 |
+
import matplotlib.pyplot as plt
|
33 |
+
import numpy as np
|
34 |
+
import pandas as pd
|
35 |
+
import pickle
|
36 |
+
import scanpy as sc
|
37 |
+
import seaborn as sns
|
38 |
+
import torch
|
39 |
+
from collections import Counter
|
40 |
+
from pathlib import Path
|
41 |
+
from tqdm.notebook import trange
|
42 |
+
from transformers import BertForMaskedLM, BertForTokenClassification, BertForSequenceClassification
|
43 |
+
|
44 |
+
from .tokenizer import TOKEN_DICTIONARY_FILE
|
45 |
+
|
46 |
+
from .in_silico_perturber import load_and_filter, \
|
47 |
+
downsample_and_sort, \
|
48 |
+
load_model, \
|
49 |
+
quant_layers, \
|
50 |
+
downsample_and_sort, \
|
51 |
+
pad_tensor_list, \
|
52 |
+
get_model_input_size
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.getLogger(__name__)
|
56 |
+
|
57 |
+
# get cell embeddings excluding padding
|
58 |
+
def mean_nonpadding_embs(embs, original_lens):
|
59 |
+
# mask based on padding lengths
|
60 |
+
mask = torch.arange(embs.size(1)).unsqueeze(0).to("cuda") < original_lens.unsqueeze(1)
|
61 |
+
|
62 |
+
# extend mask dimensions to match the embeddings tensor
|
63 |
+
mask = mask.unsqueeze(2).expand_as(embs)
|
64 |
+
|
65 |
+
# use the mask to zero out the embeddings in padded areas
|
66 |
+
masked_embs = embs * mask.float()
|
67 |
+
|
68 |
+
# sum and divide by the lengths to get the mean of non-padding embs
|
69 |
+
mean_embs = masked_embs.sum(1) / original_lens.view(-1, 1).float()
|
70 |
+
return mean_embs
|
71 |
+
|
72 |
+
# average embedding position of goal cell states
|
73 |
+
def get_embs(model,
|
74 |
+
filtered_input_data,
|
75 |
+
emb_mode,
|
76 |
+
layer_to_quant,
|
77 |
+
pad_token_id,
|
78 |
+
forward_batch_size):
|
79 |
+
|
80 |
+
model_input_size = get_model_input_size(model)
|
81 |
+
total_batch_length = len(filtered_input_data)
|
82 |
+
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
83 |
+
forward_batch_size = forward_batch_size-1
|
84 |
+
|
85 |
+
embs_list = []
|
86 |
+
for i in trange(0, total_batch_length, forward_batch_size):
|
87 |
+
max_range = min(i+forward_batch_size, total_batch_length)
|
88 |
+
|
89 |
+
minibatch = filtered_input_data.select([i for i in range(i, max_range)])
|
90 |
+
max_len = max(minibatch["length"])
|
91 |
+
original_lens = torch.tensor(minibatch["length"]).to("cuda")
|
92 |
+
minibatch.set_format(type="torch")
|
93 |
+
|
94 |
+
input_data_minibatch = minibatch["input_ids"]
|
95 |
+
input_data_minibatch = pad_tensor_list(input_data_minibatch,
|
96 |
+
max_len,
|
97 |
+
pad_token_id,
|
98 |
+
model_input_size)
|
99 |
+
|
100 |
+
with torch.no_grad():
|
101 |
+
outputs = model(
|
102 |
+
input_ids = input_data_minibatch.to("cuda")
|
103 |
+
)
|
104 |
+
|
105 |
+
embs_i = outputs.hidden_states[layer_to_quant]
|
106 |
+
|
107 |
+
if emb_mode == "cell":
|
108 |
+
mean_embs = mean_nonpadding_embs(embs_i, original_lens)
|
109 |
+
embs_list += [mean_embs]
|
110 |
+
|
111 |
+
del outputs
|
112 |
+
del minibatch
|
113 |
+
del input_data_minibatch
|
114 |
+
del embs_i
|
115 |
+
del mean_embs
|
116 |
+
torch.cuda.empty_cache()
|
117 |
+
|
118 |
+
embs_stack = torch.cat(embs_list)
|
119 |
+
return embs_stack
|
120 |
+
|
121 |
+
def label_embs(embs, downsampled_data, emb_labels):
|
122 |
+
embs_df = pd.DataFrame(embs.cpu())
|
123 |
+
if emb_labels is not None:
|
124 |
+
for label in emb_labels:
|
125 |
+
emb_label = downsampled_data[label]
|
126 |
+
embs_df[label] = emb_label
|
127 |
+
return embs_df
|
128 |
+
|
129 |
+
def plot_umap(embs_df, emb_dims, label, output_file, kwargs_dict):
|
130 |
+
only_embs_df = embs_df.iloc[:,:emb_dims]
|
131 |
+
only_embs_df.index = pd.RangeIndex(0, only_embs_df.shape[0], name=None).astype(str)
|
132 |
+
only_embs_df.columns = pd.RangeIndex(0, only_embs_df.shape[1], name=None).astype(str)
|
133 |
+
vars_dict = {"embs": only_embs_df.columns}
|
134 |
+
obs_dict = {"cell_id": list(only_embs_df.index),
|
135 |
+
f"{label}": list(embs_df[label])}
|
136 |
+
adata = anndata.AnnData(X=only_embs_df, obs=obs_dict, var=vars_dict)
|
137 |
+
sc.tl.pca(adata, svd_solver='arpack')
|
138 |
+
sc.pp.neighbors(adata)
|
139 |
+
sc.tl.umap(adata)
|
140 |
+
sns.set(rc={'figure.figsize':(10,10)}, font_scale=2.3)
|
141 |
+
sns.set_style("white")
|
142 |
+
default_kwargs_dict = {"palette":"Set2", "size":200}
|
143 |
+
if kwargs_dict is not None:
|
144 |
+
default_kwargs_dict.update(kwargs_dict)
|
145 |
+
|
146 |
+
sc.pl.umap(adata, color=label, save=output_file, **default_kwargs_dict)
|
147 |
+
|
148 |
+
|
149 |
+
def gen_heatmap_class_colors(labels, df):
|
150 |
+
pal = sns.cubehelix_palette(len(Counter(labels).keys()), light=0.9, dark=0.1, hue=1, reverse=True, start=1, rot=-2)
|
151 |
+
lut = dict(zip(map(str, Counter(labels).keys()), pal))
|
152 |
+
colors = pd.Series(labels, index=df.index).map(lut)
|
153 |
+
return colors
|
154 |
+
|
155 |
+
def gen_heatmap_class_dict(classes, label_colors_series):
|
156 |
+
class_color_dict_df = pd.DataFrame({"classes": classes, "color": label_colors_series})
|
157 |
+
class_color_dict_df = class_color_dict_df.drop_duplicates(subset=["classes"])
|
158 |
+
return dict(zip(class_color_dict_df["classes"],class_color_dict_df["color"]))
|
159 |
+
|
160 |
+
def make_colorbar(embs_df, label):
|
161 |
+
|
162 |
+
labels = list(embs_df[label])
|
163 |
+
|
164 |
+
cell_type_colors = gen_heatmap_class_colors(labels, embs_df)
|
165 |
+
label_colors = pd.DataFrame(cell_type_colors, columns=[label])
|
166 |
+
|
167 |
+
for i,row in label_colors.iterrows():
|
168 |
+
colors=row[0]
|
169 |
+
if len(colors)!=3 or any(np.isnan(colors)):
|
170 |
+
print(i,colors)
|
171 |
+
|
172 |
+
label_colors.isna().sum()
|
173 |
+
|
174 |
+
# create dictionary for colors and classes
|
175 |
+
label_color_dict = gen_heatmap_class_dict(labels, label_colors[label])
|
176 |
+
return label_colors, label_color_dict
|
177 |
+
|
178 |
+
def plot_heatmap(embs_df, emb_dims, label, output_file, kwargs_dict):
|
179 |
+
sns.set_style("white")
|
180 |
+
sns.set(font_scale=2)
|
181 |
+
plt.figure(figsize=(15, 15), dpi=150)
|
182 |
+
label_colors, label_color_dict = make_colorbar(embs_df, label)
|
183 |
+
|
184 |
+
default_kwargs_dict = {"row_cluster": True,
|
185 |
+
"col_cluster": True,
|
186 |
+
"row_colors": label_colors,
|
187 |
+
"standard_scale": 1,
|
188 |
+
"linewidths": 0,
|
189 |
+
"xticklabels": False,
|
190 |
+
"yticklabels": False,
|
191 |
+
"figsize": (15,15),
|
192 |
+
"center": 0,
|
193 |
+
"cmap": "magma"}
|
194 |
+
|
195 |
+
if kwargs_dict is not None:
|
196 |
+
default_kwargs_dict.update(kwargs_dict)
|
197 |
+
g = sns.clustermap(embs_df.iloc[:,0:emb_dims].apply(pd.to_numeric), **default_kwargs_dict)
|
198 |
+
|
199 |
+
plt.setp(g.ax_row_colors.get_xmajorticklabels(), rotation=45, ha="right")
|
200 |
+
|
201 |
+
for label in list(label_color_dict.keys()):
|
202 |
+
g.ax_col_dendrogram.bar(0, 0, color=label_color_dict[label], label=label, linewidth=0)
|
203 |
+
|
204 |
+
# g.ax_col_dendrogram.set_visible(False)
|
205 |
+
# g.ax_col_dendrogram.set_xlim([0,0])
|
206 |
+
l1 = g.ax_col_dendrogram.legend(title=f"{label}",
|
207 |
+
loc="lower center",
|
208 |
+
ncol=4,
|
209 |
+
bbox_to_anchor=(0.5, 1),
|
210 |
+
facecolor="white")
|
211 |
+
|
212 |
+
plt.savefig(output_file, bbox_inches='tight')
|
213 |
+
|
214 |
+
class EmbExtractor:
|
215 |
+
valid_option_dict = {
|
216 |
+
"model_type": {"Pretrained","GeneClassifier","CellClassifier"},
|
217 |
+
"num_classes": {int},
|
218 |
+
"emb_mode": {"cell","gene"},
|
219 |
+
"cell_emb_style": {"mean_pool"},
|
220 |
+
"filter_data": {None, dict},
|
221 |
+
"max_ncells": {None, int},
|
222 |
+
"emb_layer": {-1, 0},
|
223 |
+
"emb_label": {None, list},
|
224 |
+
"labels_to_plot": {None, list},
|
225 |
+
"forward_batch_size": {int},
|
226 |
+
"nproc": {int},
|
227 |
+
}
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
model_type="Pretrained",
|
231 |
+
num_classes=0,
|
232 |
+
emb_mode="cell",
|
233 |
+
cell_emb_style="mean_pool",
|
234 |
+
filter_data=None,
|
235 |
+
max_ncells=1000,
|
236 |
+
emb_layer=-1,
|
237 |
+
emb_label=None,
|
238 |
+
labels_to_plot=None,
|
239 |
+
forward_batch_size=100,
|
240 |
+
nproc=4,
|
241 |
+
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
Initialize embedding extractor.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
model_type : {"Pretrained","GeneClassifier","CellClassifier"}
|
249 |
+
Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
|
250 |
+
num_classes : int
|
251 |
+
If model is a gene or cell classifier, specify number of classes it was trained to classify.
|
252 |
+
For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
|
253 |
+
emb_mode : {"cell","gene"}
|
254 |
+
Whether to output cell or gene embeddings.
|
255 |
+
cell_emb_style : "mean_pool"
|
256 |
+
Method for summarizing cell embeddings.
|
257 |
+
Currently only option is mean pooling of gene embeddings for given cell.
|
258 |
+
filter_data : None, dict
|
259 |
+
Default is to extract embeddings from all input data.
|
260 |
+
Otherwise, dictionary specifying .dataset column name and list of values to filter by.
|
261 |
+
max_ncells : None, int
|
262 |
+
Maximum number of cells to extract embeddings from.
|
263 |
+
Default is 1000 cells randomly sampled from input data.
|
264 |
+
If None, will extract embeddings from all cells.
|
265 |
+
emb_layer : {-1, 0}
|
266 |
+
Embedding layer to extract.
|
267 |
+
The last layer is most specifically weighted to optimize the given learning objective.
|
268 |
+
Generally, it is best to extract the 2nd to last layer to get a more general representation.
|
269 |
+
-1: 2nd to last layer
|
270 |
+
0: last layer
|
271 |
+
emb_label : None, list
|
272 |
+
List of column name(s) in .dataset to add as labels to embedding output.
|
273 |
+
labels_to_plot : None, list
|
274 |
+
Cell labels to plot.
|
275 |
+
Shown as color bar in heatmap.
|
276 |
+
Shown as cell color in umap.
|
277 |
+
Plotting umap requires labels to plot.
|
278 |
+
forward_batch_size : int
|
279 |
+
Batch size for forward pass.
|
280 |
+
nproc : int
|
281 |
+
Number of CPU processes to use.
|
282 |
+
token_dictionary_file : Path
|
283 |
+
Path to pickle file containing token dictionary (Ensembl ID:token).
|
284 |
+
"""
|
285 |
+
|
286 |
+
self.model_type = model_type
|
287 |
+
self.num_classes = num_classes
|
288 |
+
self.emb_mode = emb_mode
|
289 |
+
self.cell_emb_style = cell_emb_style
|
290 |
+
self.filter_data = filter_data
|
291 |
+
self.max_ncells = max_ncells
|
292 |
+
self.emb_layer = emb_layer
|
293 |
+
self.emb_label = emb_label
|
294 |
+
self.labels_to_plot = labels_to_plot
|
295 |
+
self.forward_batch_size = forward_batch_size
|
296 |
+
self.nproc = nproc
|
297 |
+
|
298 |
+
self.validate_options()
|
299 |
+
|
300 |
+
# load token dictionary (Ensembl IDs:token)
|
301 |
+
with open(token_dictionary_file, "rb") as f:
|
302 |
+
self.gene_token_dict = pickle.load(f)
|
303 |
+
|
304 |
+
self.pad_token_id = self.gene_token_dict.get("<pad>")
|
305 |
+
|
306 |
+
|
307 |
+
def validate_options(self):
|
308 |
+
|
309 |
+
# confirm arguments are within valid options and compatible with each other
|
310 |
+
for attr_name,valid_options in self.valid_option_dict.items():
|
311 |
+
attr_value = self.__dict__[attr_name]
|
312 |
+
if type(attr_value) not in {list, dict}:
|
313 |
+
if attr_value in valid_options:
|
314 |
+
continue
|
315 |
+
valid_type = False
|
316 |
+
for option in valid_options:
|
317 |
+
if (option in [int,list,dict]) and isinstance(attr_value, option):
|
318 |
+
valid_type = True
|
319 |
+
break
|
320 |
+
if valid_type:
|
321 |
+
continue
|
322 |
+
logger.error(
|
323 |
+
f"Invalid option for {attr_name}. " \
|
324 |
+
f"Valid options for {attr_name}: {valid_options}"
|
325 |
+
)
|
326 |
+
raise
|
327 |
+
|
328 |
+
if self.filter_data is not None:
|
329 |
+
for key,value in self.filter_data.items():
|
330 |
+
if type(value) != list:
|
331 |
+
self.filter_data[key] = [value]
|
332 |
+
logger.warning(
|
333 |
+
"Values in filter_data dict must be lists. " \
|
334 |
+
f"Changing {key} value to list ([{value}]).")
|
335 |
+
|
336 |
+
def extract_embs(self,
|
337 |
+
model_directory,
|
338 |
+
input_data_file,
|
339 |
+
output_directory,
|
340 |
+
output_prefix):
|
341 |
+
"""
|
342 |
+
Extract embeddings from input data and save as results in output_directory.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
model_directory : Path
|
347 |
+
Path to directory containing model
|
348 |
+
input_data_file : Path
|
349 |
+
Path to directory containing .dataset inputs
|
350 |
+
output_directory : Path
|
351 |
+
Path to directory where embedding data will be saved as csv
|
352 |
+
output_prefix : str
|
353 |
+
Prefix for output file
|
354 |
+
"""
|
355 |
+
|
356 |
+
filtered_input_data = load_and_filter(self.filter_data, self.nproc, input_data_file)
|
357 |
+
downsampled_data = downsample_and_sort(filtered_input_data, self.max_ncells)
|
358 |
+
model = load_model(self.model_type, self.num_classes, model_directory)
|
359 |
+
layer_to_quant = quant_layers(model)+self.emb_layer
|
360 |
+
embs = get_embs(model,
|
361 |
+
downsampled_data,
|
362 |
+
self.emb_mode,
|
363 |
+
layer_to_quant,
|
364 |
+
self.pad_token_id,
|
365 |
+
self.forward_batch_size)
|
366 |
+
embs_df = label_embs(embs, downsampled_data, self.emb_label)
|
367 |
+
|
368 |
+
# save embeddings to output_path
|
369 |
+
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
370 |
+
embs_df.to_csv(output_path)
|
371 |
+
|
372 |
+
return embs_df
|
373 |
+
|
374 |
+
def plot_embs(self,
|
375 |
+
embs,
|
376 |
+
plot_style,
|
377 |
+
output_directory,
|
378 |
+
output_prefix,
|
379 |
+
max_ncells_to_plot=1000,
|
380 |
+
kwargs_dict=None):
|
381 |
+
|
382 |
+
"""
|
383 |
+
Plot embeddings, coloring by provided labels.
|
384 |
+
|
385 |
+
Parameters
|
386 |
+
----------
|
387 |
+
embs : pandas.core.frame.DataFrame
|
388 |
+
Pandas dataframe containing embeddings output from extract_embs
|
389 |
+
plot_style : str
|
390 |
+
Style of plot: "heatmap" or "umap"
|
391 |
+
output_directory : Path
|
392 |
+
Path to directory where plots will be saved as pdf
|
393 |
+
output_prefix : str
|
394 |
+
Prefix for output file
|
395 |
+
max_ncells_to_plot : None, int
|
396 |
+
Maximum number of cells to plot.
|
397 |
+
Default is 1000 cells randomly sampled from embeddings.
|
398 |
+
If None, will plot embeddings from all cells.
|
399 |
+
kwargs_dict : dict
|
400 |
+
Dictionary of kwargs to pass to plotting function.
|
401 |
+
"""
|
402 |
+
|
403 |
+
if plot_style not in ["heatmap","umap"]:
|
404 |
+
logger.error(
|
405 |
+
"Invalid option for 'plot_style'. " \
|
406 |
+
"Valid options: {'heatmap','umap'}"
|
407 |
+
)
|
408 |
+
raise
|
409 |
+
|
410 |
+
if (plot_style == "umap") and (self.labels_to_plot is None):
|
411 |
+
logger.error(
|
412 |
+
"Plotting UMAP requires 'labels_to_plot'. "
|
413 |
+
)
|
414 |
+
raise
|
415 |
+
|
416 |
+
if max_ncells_to_plot > self.max_ncells:
|
417 |
+
max_ncells_to_plot = self.max_ncells
|
418 |
+
logger.warning(
|
419 |
+
"max_ncells_to_plot must be <= max_ncells. " \
|
420 |
+
f"Changing max_ncells_to_plot to {self.max_ncells}.")
|
421 |
+
|
422 |
+
if (max_ncells_to_plot is not None) \
|
423 |
+
and (max_ncells_to_plot < self.max_ncells):
|
424 |
+
embs = embs.sample(max_ncells_to_plot, axis=0)
|
425 |
+
|
426 |
+
if self.emb_label is None:
|
427 |
+
label_len = 0
|
428 |
+
else:
|
429 |
+
label_len = len(self.emb_label)
|
430 |
+
|
431 |
+
emb_dims = embs.shape[1] - label_len
|
432 |
+
|
433 |
+
if self.emb_label is None:
|
434 |
+
emb_labels = None
|
435 |
+
else:
|
436 |
+
emb_labels = embs.columns[emb_dims:]
|
437 |
+
|
438 |
+
if plot_style == "umap":
|
439 |
+
for label in self.labels_to_plot:
|
440 |
+
if label not in emb_labels:
|
441 |
+
logger.warning(
|
442 |
+
f"Label {label} from labels_to_plot " \
|
443 |
+
f"not present in provided embeddings dataframe.")
|
444 |
+
continue
|
445 |
+
output_prefix_label = "_" + output_prefix + f"_umap_{label}"
|
446 |
+
output_file = (Path(output_directory) / output_prefix_label).with_suffix(".pdf")
|
447 |
+
plot_umap(embs, emb_dims, label, output_prefix_label, kwargs_dict)
|
448 |
+
|
449 |
+
if plot_style == "heatmap":
|
450 |
+
for label in self.labels_to_plot:
|
451 |
+
if label not in emb_labels:
|
452 |
+
logger.warning(
|
453 |
+
f"Label {label} from labels_to_plot " \
|
454 |
+
f"not present in provided embeddings dataframe.")
|
455 |
+
continue
|
456 |
+
output_prefix_label = output_prefix + f"_heatmap_{label}"
|
457 |
+
output_file = (Path(output_directory) / output_prefix_label).with_suffix(".pdf")
|
458 |
+
plot_heatmap(embs, emb_dims, label, output_file, kwargs_dict)
|
459 |
+
|
geneformer/in_silico_perturber.py
CHANGED
@@ -41,6 +41,43 @@ from .tokenizer import TOKEN_DICTIONARY_FILE
|
|
41 |
|
42 |
logger = logging.getLogger(__name__)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def quant_layers(model):
|
45 |
layer_nums = []
|
46 |
for name, parameter in model.named_parameters():
|
@@ -726,8 +763,8 @@ class InSilicoPerturber:
|
|
726 |
Prefix for output files
|
727 |
"""
|
728 |
|
729 |
-
filtered_input_data = self.
|
730 |
-
model = self.
|
731 |
layer_to_quant = quant_layers(model)+self.emb_layer
|
732 |
|
733 |
if self.cell_states_to_model is None:
|
@@ -755,42 +792,6 @@ class InSilicoPerturber:
|
|
755 |
state_embs_dict,
|
756 |
output_directory,
|
757 |
output_prefix)
|
758 |
-
|
759 |
-
# load data and filter by defined criteria
|
760 |
-
def load_and_filter(self, input_data_file):
|
761 |
-
data = load_from_disk(input_data_file)
|
762 |
-
if self.filter_data is not None:
|
763 |
-
for key,value in self.filter_data.items():
|
764 |
-
def filter_data_by_criteria(example):
|
765 |
-
return example[key] in value
|
766 |
-
data = data.filter(filter_data_by_criteria, num_proc=self.nproc)
|
767 |
-
if len(data) == 0:
|
768 |
-
logger.error(
|
769 |
-
"No cells remain after filtering. Check filtering criteria.")
|
770 |
-
raise
|
771 |
-
data_shuffled = data.shuffle(seed=42)
|
772 |
-
return data_shuffled
|
773 |
-
|
774 |
-
# load model to GPU
|
775 |
-
def load_model(self, model_directory):
|
776 |
-
if self.model_type == "Pretrained":
|
777 |
-
model = BertForMaskedLM.from_pretrained(model_directory,
|
778 |
-
output_hidden_states=True,
|
779 |
-
output_attentions=False)
|
780 |
-
elif self.model_type == "GeneClassifier":
|
781 |
-
model = BertForTokenClassification.from_pretrained(model_directory,
|
782 |
-
num_labels=self.num_classes,
|
783 |
-
output_hidden_states=True,
|
784 |
-
output_attentions=False)
|
785 |
-
elif self.model_type == "CellClassifier":
|
786 |
-
model = BertForSequenceClassification.from_pretrained(model_directory,
|
787 |
-
num_labels=self.num_classes,
|
788 |
-
output_hidden_states=True,
|
789 |
-
output_attentions=False)
|
790 |
-
# put the model in eval mode for fwd pass
|
791 |
-
model.eval()
|
792 |
-
model = model.to("cuda:0")
|
793 |
-
return model
|
794 |
|
795 |
# determine effect of perturbation on other genes
|
796 |
def in_silico_perturb(self,
|
|
|
41 |
|
42 |
logger = logging.getLogger(__name__)
|
43 |
|
44 |
+
|
45 |
+
# load data and filter by defined criteria
|
46 |
+
def load_and_filter(filter_data, nproc, input_data_file):
|
47 |
+
data = load_from_disk(input_data_file)
|
48 |
+
if filter_data is not None:
|
49 |
+
for key,value in filter_data.items():
|
50 |
+
def filter_data_by_criteria(example):
|
51 |
+
return example[key] in value
|
52 |
+
data = data.filter(filter_data_by_criteria, num_proc=nproc)
|
53 |
+
if len(data) == 0:
|
54 |
+
logger.error(
|
55 |
+
"No cells remain after filtering. Check filtering criteria.")
|
56 |
+
raise
|
57 |
+
data_shuffled = data.shuffle(seed=42)
|
58 |
+
return data_shuffled
|
59 |
+
|
60 |
+
# load model to GPU
|
61 |
+
def load_model(model_type, num_classes, model_directory):
|
62 |
+
if model_type == "Pretrained":
|
63 |
+
model = BertForMaskedLM.from_pretrained(model_directory,
|
64 |
+
output_hidden_states=True,
|
65 |
+
output_attentions=False)
|
66 |
+
elif model_type == "GeneClassifier":
|
67 |
+
model = BertForTokenClassification.from_pretrained(model_directory,
|
68 |
+
num_labels=num_classes,
|
69 |
+
output_hidden_states=True,
|
70 |
+
output_attentions=False)
|
71 |
+
elif model_type == "CellClassifier":
|
72 |
+
model = BertForSequenceClassification.from_pretrained(model_directory,
|
73 |
+
num_labels=num_classes,
|
74 |
+
output_hidden_states=True,
|
75 |
+
output_attentions=False)
|
76 |
+
# put the model in eval mode for fwd pass
|
77 |
+
model.eval()
|
78 |
+
model = model.to("cuda:0")
|
79 |
+
return model
|
80 |
+
|
81 |
def quant_layers(model):
|
82 |
layer_nums = []
|
83 |
for name, parameter in model.named_parameters():
|
|
|
763 |
Prefix for output files
|
764 |
"""
|
765 |
|
766 |
+
filtered_input_data = load_and_filter(self.filter_data, self.nproc, input_data_file)
|
767 |
+
model = load_model(self.model_type, self.num_classes, model_directory)
|
768 |
layer_to_quant = quant_layers(model)+self.emb_layer
|
769 |
|
770 |
if self.cell_states_to_model is None:
|
|
|
792 |
state_embs_dict,
|
793 |
output_directory,
|
794 |
output_prefix)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
795 |
|
796 |
# determine effect of perturbation on other genes
|
797 |
def in_silico_perturb(self,
|