--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6028 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.123 | 0.99 | 56 | 0.34 | 2.0351 | | 1.5133 | 2.0 | 113 | 0.63 | 1.4339 | | 1.2081 | 2.99 | 169 | 0.7 | 1.1070 | | 1.007 | 4.0 | 226 | 0.78 | 0.9590 | | 0.7952 | 4.99 | 282 | 0.79 | 0.8661 | | 0.6369 | 6.0 | 339 | 0.75 | 0.8490 | | 0.5794 | 6.99 | 392 | 0.6839 | 0.82 | | 0.4896 | 8.0 | 449 | 0.6623 | 0.84 | | 0.5667 | 8.99 | 505 | 0.6228 | 0.83 | | 0.46 | 9.96 | 560 | 0.6028 | 0.87 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3