File size: 3,817 Bytes
8cc63c8
61c2cc4
 
 
 
 
 
 
 
 
 
 
 
 
8cc63c8
61c2cc4
8cc63c8
 
 
61c2cc4
 
 
8cc63c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c2cc4
 
 
 
 
 
 
 
 
 
 
 
8cc63c8
61c2cc4
8cc63c8
61c2cc4
8cc63c8
61c2cc4
8cc63c8
61c2cc4
 
 
 
 
 
 
 
 
8cc63c8
 
61c2cc4
 
 
8cc63c8
61c2cc4
 
 
 
8cc63c8
61c2cc4
 
 
 
 
8cc63c8
 
 
b353b5b
61c2cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b912d
61c2cc4
 
 
 
a7b912d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
 # coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Character Error Ratio (CER) metric. """

import jiwer
import jiwer.transforms as tr
from typing import List

import datasets

class SentencesToListOfCharacters(tr.AbstractTransform):
    def process_string(self, s: str):
        return list(s)

    def process_list(self, inp: List[str]):
        chars = []

        for sentence in inp:
            chars.extend(self.process_string(sentence))

        return chars


cer_transform = tr.Compose(
    [
        tr.RemoveMultipleSpaces(),
        tr.Strip(),
        SentencesToListOfCharacters(),
    ]
)


_CITATION = """\
@inproceedings{inproceedings,
    author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
    year = {2004},
    month = {01},
    pages = {},
    title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""

_DESCRIPTION = """\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.

CER is similar to Word Error Rate (WER), but operate on character insted of word. Please refer to docs of WER for further information.

Character error rate can be computed as:

CER = (S + D + I) / N = (S + D + I) / (S + D + C)

where

S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct words,
N is the number of words in the reference (N=S+D+C).

CER's output is always a number between 0 and 1. This value indicates the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
"""

_KWARGS_DESCRIPTION = """
Computes CER score of transcribed segments against references.
Args:
    references: list of references for each speech input.
    predictions: list of transcribtions to score.
Returns:
    (float): the character error rate

Examples:

    >>> predictions = ["this is the prediction", "there is an other sample"]
    >>> references = ["this is the reference", "there is another one"]
    >>> cer = datasets.load_metric("cer")
    >>> cer_score = cer.compute(predictions=predictions, references=references)
    >>> print(cer_score)
    0.34146341463414637
"""


@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CER(datasets.Metric):
    def _info(self):
        return datasets.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string", id="sequence"),
                    "references": datasets.Value("string", id="sequence"),
                }
            ),
            codebase_urls=["https://github.com/jitsi/jiwer/"],
            reference_urls=[
                "https://en.wikipedia.org/wiki/Word_error_rate",
                "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates",
            ],
        )

    def _compute(self, predictions, references):
        return jiwer.wer(references, predictions, truth_transform=cer_transform, hypothesis_transform=cer_transform)