ctoraman commited on
Commit
2e494b3
1 Parent(s): ff15889

model uploaded.

Browse files
Files changed (4) hide show
  1. README.md +40 -0
  2. config.json +26 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer.json +0 -0
README.md CHANGED
@@ -1,3 +1,43 @@
1
  ---
 
 
 
 
2
  license: cc-by-nc-sa-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - tr
4
+ tags:
5
+ - roberta
6
  license: cc-by-nc-sa-4.0
7
+ datasets:
8
+ - oscar
9
  ---
10
+
11
+ # RoBERTa Turkish medium Morph-level 28k (uncased)
12
+
13
+ Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
14
+ The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned.
15
+
16
+ Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 28.3k.
17
+
18
+ ## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation.
19
+
20
+ The details can be found at this paper:
21
+ https://arxiv.org/...
22
+
23
+ The following code can be used for model loading and tokenization, example max length (514) can be changed:
24
+ ```
25
+ model = AutoModel.from_pretrained([model_path])
26
+ #for sequence classification:
27
+ #model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])
28
+
29
+ tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
30
+ tokenizer.mask_token = "[MASK]"
31
+ tokenizer.cls_token = "[CLS]"
32
+ tokenizer.sep_token = "[SEP]"
33
+ tokenizer.pad_token = "[PAD]"
34
+ tokenizer.unk_token = "[UNK]"
35
+ tokenizer.bos_token = "[CLS]"
36
+ tokenizer.eos_token = "[SEP]"
37
+ tokenizer.model_max_length = 514
38
+ ```
39
+
40
+ ### BibTeX entry and citation info
41
+ ```bibtex
42
+ @article{}
43
+ ```
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 512,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 516,
16
+ "model_type": "roberta",
17
+ "num_attention_heads": 8,
18
+ "num_hidden_layers": 8,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.12.5",
23
+ "type_vocab_size": 1,
24
+ "use_cache": true,
25
+ "vocab_size": 28304
26
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90789c7a03c2790b2fa13ff9985afd6fbac42fb70e200b9a77215f2351f7676d
3
+ size 194720427
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff