File size: 1,702 Bytes
f858470 8fe4411 f858470 8fe4411 f858470 8fe4411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
language:
- tr
tags:
- roberta
license: cc-by-nc-sa-4.0
datasets:
- oscar
---
# RoBERTa Turkish medium Morph-level 7k (uncased)
Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned.
Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Morph-level, which means that text is split according to a Turkish morphological analyzer (Zemberek). Vocabulary size is 7.5k.
## Note that this model needs a preprocessing step before running, because the tokenizer file is not a morphological anaylzer. That is, the test dataset can not be split into morphemes with the tokenizer file. The user needs to process any test dataset by a Turkish morphological analyzer (Zemberek in this case) before running evaluation.
The details can be found at this paper:
https://arxiv.org/...
The following code can be used for model loading and tokenization, example max length (514) can be changed:
```
model = AutoModel.from_pretrained([model_path])
#for sequence classification:
#model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])
tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
tokenizer.mask_token = "[MASK]"
tokenizer.cls_token = "[CLS]"
tokenizer.sep_token = "[SEP]"
tokenizer.pad_token = "[PAD]"
tokenizer.unk_token = "[UNK]"
tokenizer.bos_token = "[CLS]"
tokenizer.eos_token = "[SEP]"
tokenizer.model_max_length = 514
```
### BibTeX entry and citation info
```bibtex
@article{}
```
|