Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,40 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
tags:
|
5 |
+
- roberta
|
6 |
license: cc-by-nc-sa-4.0
|
7 |
---
|
8 |
+
|
9 |
+
# RoBERTweetTurkCovid (uncased)
|
10 |
+
|
11 |
+
Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
|
12 |
+
The pretrained corpus is a Turkish tweets collection related to COVID-19. The details of the data can be found at this paper:
|
13 |
+
https://arxiv.org/...
|
14 |
+
|
15 |
+
Model architecture is similar to RoBERTa-base (12 layers, 12 heads, and 768 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 30k.
|
16 |
+
|
17 |
+
The details of pretraining can be found at this paper:
|
18 |
+
https://arxiv.org/...
|
19 |
+
|
20 |
+
The following code can be used for model loading and tokenization, example max length (768) can be changed:
|
21 |
+
```
|
22 |
+
model = AutoModel.from_pretrained([model_path])
|
23 |
+
#for sequence classification:
|
24 |
+
#model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])
|
25 |
+
|
26 |
+
tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
|
27 |
+
tokenizer.mask_token = "[MASK]"
|
28 |
+
tokenizer.cls_token = "[CLS]"
|
29 |
+
tokenizer.sep_token = "[SEP]"
|
30 |
+
tokenizer.pad_token = "[PAD]"
|
31 |
+
tokenizer.unk_token = "[UNK]"
|
32 |
+
tokenizer.bos_token = "[CLS]"
|
33 |
+
tokenizer.eos_token = "[SEP]"
|
34 |
+
tokenizer.model_max_length = 768
|
35 |
+
```
|
36 |
+
|
37 |
+
### BibTeX entry and citation info
|
38 |
+
```bibtex
|
39 |
+
@article{}
|
40 |
+
```
|