---
library_name: ctranslate2
license: mit
base_model:
- microsoft/phi-4
base_model_relation: quantized
tags:
- ctranslate2
- phi-4
- chat
---
Ctranslate2 convesion of Phi-4
# Example Usage
Non-Streaming Example:
```python
import ctranslate2
from transformers import AutoTokenizer
def generate_response(prompt, system_message, model_path):
generator = ctranslate2.Generator(
model_path,
device="cuda",
compute_type="int8"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
formatted_prompt = f"""<|im_start|>system<|im_sep|>{system_message}<|im_end|>
<|im_start|>user<|im_sep|>{prompt}<|im_end|>
<|im_start|>assistant<|im_sep|>"""
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(formatted_prompt))
results = generator.generate_batch(
[tokens],
max_length=1024,
sampling_temperature=0.7
)
response = tokenizer.decode(results[0].sequences_ids[0], skip_special_tokens=True)
return response
if __name__ == "__main__":
model_path = "path/to/your/phi-4-ct2-model"
system_message = "You are a helpful AI assistant."
user_prompt = "Write a short poem about a cat."
response = generate_response(user_prompt, system_message, model_path)
print("\nGenerated response:")
print(response)
```
Streaming Example:
```python
import ctranslate2
from transformers import AutoTokenizer
import sys
def generate_response(prompt, system_message, model_path):
"""
Generates and streams a response from an AI assistant.
Initializes the CTranslate2 generator and tokenizer, formats the input prompt,
tokenizes it, and streams the generated tokens by printing them as they are produced.
Parameters:
prompt (str): The user's input prompt.
system_message (str): The system-level instruction.
model_path (str): Path to the CTranslate2 model directory.
"""
generator = ctranslate2.Generator(model_path, device="cuda", compute_type="int8")
tokenizer = AutoTokenizer.from_pretrained(model_path)
formatted_prompt = f"""<|im_start|>system<|im_sep|>{system_message}<|im_end|>
<|im_start|>user<|im_sep|>{prompt}<|im_end|>
<|im_start|>assistant<|im_sep|>"""
tokens = tokenizer.tokenize(formatted_prompt)
for step in generator.generate_tokens([tokens], max_length=1024, sampling_temperature=0.7):
token = step.tokens[0]
decoded_token = tokenizer.decode([step.token_ids[0]])
print(decoded_token, end="", flush=True)
if token in tokenizer.eos_token or token in tokenizer.all_special_tokens:
break
if __name__ == "__main__":
model_path = "path/to/your/phi-4-ct2-model"
system_message = "You are a helpful AI assistant."
user_prompt = "Write a short poem about a cat."
print("\nGenerating response:")
generate_response(user_prompt, system_message, model_path)
```