|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", |
|
"__module__": "stable_baselines3.common.policies", |
|
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", |
|
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96f2f12d0>", |
|
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96f2f1360>", |
|
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96f2f13f0>", |
|
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96f2f1480>", |
|
"_build": "<function ActorCriticPolicy._build at 0x7fa96f2f1510>", |
|
"forward": "<function ActorCriticPolicy.forward at 0x7fa96f2f15a0>", |
|
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa96f2f1630>", |
|
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96f2f16c0>", |
|
"_predict": "<function ActorCriticPolicy._predict at 0x7fa96f2f1750>", |
|
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96f2f17e0>", |
|
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96f2f1870>", |
|
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96f2f1900>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7fa96f51f780>" |
|
}, |
|
"verbose": true, |
|
"policy_kwargs": {}, |
|
"observation_space": { |
|
":type:": "<class 'gym.spaces.box.Box'>", |
|
":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", |
|
"dtype": "float32", |
|
"_shape": [ |
|
10 |
|
], |
|
"low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", |
|
"high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", |
|
"bounded_below": "[ True True True True True True True True True True]", |
|
"bounded_above": "[ True True True True True True True True True True]", |
|
"_np_random": null |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gym.spaces.discrete.Discrete'>", |
|
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", |
|
"n": 4, |
|
"_shape": [], |
|
"dtype": "int64", |
|
"_np_random": null |
|
}, |
|
"n_envs": 4, |
|
"num_timesteps": 106496, |
|
"_total_timesteps": 100000, |
|
"_num_timesteps_at_start": 0, |
|
"seed": null, |
|
"action_noise": null, |
|
"start_time": 1681854602905755734, |
|
"learning_rate": 0.0003, |
|
"tensorboard_log": null, |
|
"lr_schedule": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"_last_obs": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAO8+RkOK1RE8JmCMQgAAyEIAAMhCJGpmQtNUp0IAAMhCAADIQiXdnEJQ9RhDNol4P8t5LUIAAMhCAADIQgAAyEIAAMhC5LJZQqZux0G0lcpByENTQxBDFL8IBJVCTqujQgAAyEI6yaNCK/SUQgAAyEIAAMhC85+zQgkzakMukJW+AADIQgAAyEIAAMhCZOurQj1SOkK8aMZCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu" |
|
}, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>", |
|
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg==" |
|
}, |
|
"_last_original_obs": null, |
|
"_episode_num": 0, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": -0.0649599999999999, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqM0gMCUhpRSlIwBbJRLM4wBdJRHQHbgjK9wm3R1fZQoaAZoCWgPQwiBQdKnVQQ6wJSGlFKUaBVLYmgWR0B24Ndt2s7udX2UKGgGaAloD0MIkiIyrOJFMMCUhpRSlGgVS2FoFkdAduVINEw353V9lChoBmgJaA9DCL4yb9WViIDAlIaUUpRoFUtFaBZHQHbo9sJpnHx1fZQoaAZoCWgPQwizlgLS/nc4wJSGlFKUaBVLcmgWR0B26iTr3TNMdX2UKGgGaAloD0MIG2SSkbMAMsCUhpRSlGgVS0xoFkdAdupw/gR9PXV9lChoBmgJaA9DCInPnWCfNoDAlIaUUpRoFUs0aBZHQHbr8Qyylep1fZQoaAZoCWgPQwgO2NXkqcB/wJSGlFKUaBVLGWgWR0B27EvHtF8YdX2UKGgGaAloD0MIaOp1i8AAgMCUhpRSlGgVSxZoFkdAdu8gvUSZjXV9lChoBmgJaA9DCNKnVfRHaoDAlIaUUpRoFUs/aBZHQHbx8cU/OdJ1fZQoaAZoCWgPQwhJopdRDD6AwJSGlFKUaBVLNWgWR0B28m6shgVodX2UKGgGaAloD0MIFMstrYbIOsCUhpRSlGgVS2doFkdAdvX4VARkE3V9lChoBmgJaA9DCABxV68ivzXAlIaUUpRoFUtUaBZHQHb4TGxUvPF1fZQoaAZoCWgPQwgUXRd+0G2AwJSGlFKUaBVLPWgWR0B2+SyOaOPvdX2UKGgGaAloD0MIFhdH5YZXgMCUhpRSlGgVSzpoFkdAdv05zo2XLXV9lChoBmgJaA9DCHcSEf5FxDjAlIaUUpRoFUtxaBZHQHb/KcVgx8F1fZQoaAZoCWgPQwiBzM6id7I7wJSGlFKUaBVLbGgWR0B3B92KVII4dX2UKGgGaAloD0MIj+TyH9LbN8CUhpRSlGgVS3NoFkdAdwiZDzAerHV9lChoBmgJaA9DCJ7vp8aLZYDAlIaUUpRoFUs/aBZHQHcIoaDPGAF1fZQoaAZoCWgPQwhTlba4xuB/wJSGlFKUaBVLFWgWR0B3CuSNfgJkdX2UKGgGaAloD0MIorQ3+MKQO8CUhpRSlGgVS2loFkdAdw0keIVM23V9lChoBmgJaA9DCIwUysIXL4DAlIaUUpRoFUs2aBZHQHcR9cSoOx11fZQoaAZoCWgPQwjeHoSAfGEvwJSGlFKUaBVLUWgWR0B3FsVuaWondX2UKGgGaAloD0MINGjon+ACJMCUhpRSlGgVS01oFkdAdxo0j1PFenV9lChoBmgJaA9DCC4dc56RPIDAlIaUUpRoFUs2aBZHQHcgfek56t11fZQoaAZoCWgPQwiBzqRN1Vk1wJSGlFKUaBVLW2gWR0B3IsIWxhUjdX2UKGgGaAloD0MIaOkKthHPOMCUhpRSlGgVS3VoFkdAdyMcxCY1HnV9lChoBmgJaA9DCFW+ZySCR4DAlIaUUpRoFUs3aBZHQHcslVDKHO91fZQoaAZoCWgPQwhQbXAi+i05wJSGlFKUaBVLaWgWR0B3L0h8pkPMdX2UKGgGaAloD0MICM2ue4tbgMCUhpRSlGgVSztoFkdAdzBaBqbjLnV9lChoBmgJaA9DCOCcEaV9VoDAlIaUUpRoFUs7aBZHQHc+bVz6rNp1fZQoaAZoCWgPQwgNbmsLz+8+wJSGlFKUaBVLemgWR0B3QRJsfq5cdX2UKGgGaAloD0MImyFVFK/yNMCUhpRSlGgVS1xoFkdAd0TB5HEuQXV9lChoBmgJaA9DCLSwpx3+OjHAlIaUUpRoFUtOaBZHQHdRpdB0ITp1fZQoaAZoCWgPQwj3PlWFRmyAwJSGlFKUaBVLQGgWR0B3U/LcKw6idX2UKGgGaAloD0MI7YLBNffDgMCUhpRSlGgVS6loFkdAd1oHpbD/EXV9lChoBmgJaA9DCOV620yFZDnAlIaUUpRoFUttaBZHQHdbWEwnH/91fZQoaAZoCWgPQwgnamlu5UGAwJSGlFKUaBVLOWgWR0B3YOdUbT+edX2UKGgGaAloD0MIGR9mL3s9gMCUhpRSlGgVSzRoFkdAd2aKbrkbP3V9lChoBmgJaA9DCFt7n6pCKzXAlIaUUpRoFUtkaBZHQHdu8uzyBkJ1fZQoaAZoCWgPQwiKy/EKRMc5wJSGlFKUaBVLYGgWR0B3dOC/XXiBdX2UKGgGaAloD0MI8yGoGp37gMCUhpRSlGgVS6poFkdAd3bFnIyTIXV9lChoBmgJaA9DCALU1LK1xjbAlIaUUpRoFUttaBZHQHd9w8wHqu91fZQoaAZoCWgPQwisrG2KhxOAwJSGlFKUaBVLMGgWR0B3h2yOaOPvdX2UKGgGaAloD0MI8mCL3T5zPMCUhpRSlGgVS3VoFkdAd4f1WsA/93V9lChoBmgJaA9DCOtU+Z6RNDzAlIaUUpRoFUteaBZHQHeKGPtD2J11fZQoaAZoCWgPQwhwsaIG09g3wJSGlFKUaBVLamgWR0B3in8fms/6dX2UKGgGaAloD0MIE7ngDB5KgMCUhpRSlGgVSzdoFkdAd5Ho7muDBnV9lChoBmgJaA9DCBzPZ0DdG4DAlIaUUpRoFUsvaBZHQHeTJ2t+1Bt1fZQoaAZoCWgPQwiuvOR/0kaAwJSGlFKUaBVLOGgWR0B3k8dJaq0ddX2UKGgGaAloD0MIescpOpJhf8CUhpRSlGgVSxZoFkdAd5WDaoMrmXV9lChoBmgJaA9DCM1zRL5LeTnAlIaUUpRoFUtoaBZHQHeZb0aqCH11fZQoaAZoCWgPQwjXw5eJIjgwwJSGlFKUaBVLVWgWR0B3oRgeA/cGdX2UKGgGaAloD0MIvhb03rgvgMCUhpRSlGgVSzpoFkdAd6MFuvUz9HV9lChoBmgJaA9DCN+pgHuejzvAlIaUUpRoFUtsaBZHQHem0fT1CgN1fZQoaAZoCWgPQwh0CvKzkW86wJSGlFKUaBVLbWgWR0B3qMona37UdX2UKGgGaAloD0MIyZHOwOgvgMCUhpRSlGgVSzNoFkdAd7CqwhW5pnV9lChoBmgJaA9DCEXY8PRK9THAlIaUUpRoFUtbaBZHQHeywyuZCv51fZQoaAZoCWgPQwi22O2zyiA2wJSGlFKUaBVLcmgWR0B3ul9F4LThdX2UKGgGaAloD0MIgGPPnitNgMCUhpRSlGgVSzdoFkdAd7wSSeRPoHV9lChoBmgJaA9DCHlZEwt8bTbAlIaUUpRoFUt0aBZHQHfA0bcXWOJ1fZQoaAZoCWgPQwj7dac7T8wtwJSGlFKUaBVLTWgWR0B3xAAIY3vQdX2UKGgGaAloD0MITkcAN4ubPcCUhpRSlGgVS2RoFkdAd8yRsuWa+nV9lChoBmgJaA9DCET3rGv0aYDAlIaUUpRoFUs8aBZHQHfMwEEC/491fZQoaAZoCWgPQwjW5v9VR3o1wJSGlFKUaBVLZ2gWR0B3zhcry1/ldX2UKGgGaAloD0MIngd3Z+2sf8CUhpRSlGgVSxZoFkdAd88vHLida3V9lChoBmgJaA9DCOmZXmIs6zbAlIaUUpRoFUtvaBZHQHfRIlD4QBh1fZQoaAZoCWgPQwi5bHTOb1eAwJSGlFKUaBVLOmgWR0B30x2W6bvxdX2UKGgGaAloD0MIWaX0TM9hgMCUhpRSlGgVS0FoFkdAd9cSJTER8XV9lChoBmgJaA9DCD4mUpoNbYDAlIaUUpRoFUtBaBZHQHfaQQL/jsF1fZQoaAZoCWgPQwgC8iVUcFA7wJSGlFKUaBVLdWgWR0B33YA80UGndX2UKGgGaAloD0MIM6MfDcdZgMCUhpRSlGgVSztoFkdAd9//zreImHV9lChoBmgJaA9DCCNrDaX2bjfAlIaUUpRoFUtcaBZHQHfgWfK6nR91fZQoaAZoCWgPQwglsaTcnWmAwJSGlFKUaBVLOmgWR0B35jjuKGcndX2UKGgGaAloD0MINLqD2JmGNsCUhpRSlGgVS1hoFkdAd+eVyWAwwnV9lChoBmgJaA9DCNC1L6A3PoDAlIaUUpRoFUs5aBZHQHfp9VJcxCZ1fZQoaAZoCWgPQwhKtrqckiCAwJSGlFKUaBVLM2gWR0B37+Q7tAs1dX2UKGgGaAloD0MIHZJaKJmcJMCUhpRSlGgVS0ZoFkdAd/G5xzaK13V9lChoBmgJaA9DCEm6ZvLNMjzAlIaUUpRoFUttaBZHQHfxuy7f51x1fZQoaAZoCWgPQwj9bOS6iWSAwJSGlFKUaBVLQGgWR0B3+y1RceKbdX2UKGgGaAloD0MIIJvkR7xAgMCUhpRSlGgVSzVoFkdAd/u1qFh5PnV9lChoBmgJaA9DCGvT2F4LmjfAlIaUUpRoFUttaBZHQHf9B3aBZp11fZQoaAZoCWgPQwgzbmqgOVuAwJSGlFKUaBVLPGgWR0B3/TQa72+PdX2UKGgGaAloD0MIuwopPylZgMCUhpRSlGgVSz1oFkdAeAdWWyC4BnV9lChoBmgJaA9DCAYP0755SoDAlIaUUpRoFUs3aBZHQHgHdmL9/Bp1fZQoaAZoCWgPQwhKYkm5WwiAwJSGlFKUaBVLGmgWR0B4C21UlzEKdX2UKGgGaAloD0MInznrU46/QMCUhpRSlGgVS2loFkdAeA1PGhmGunV9lChoBmgJaA9DCBo09E9wuTfAlIaUUpRoFUtxaBZHQHgPmsvIwM91fZQoaAZoCWgPQwinrRHBuP1/wJSGlFKUaBVLF2gWR0B4E0wrUb1idX2UKGgGaAloD0MI22rWGd/nOsCUhpRSlGgVS2poFkdAeBg/tY0VJ3V9lChoBmgJaA9DCOM0RBX+eD7AlIaUUpRoFUtuaBZHQHgeXBpHqeN1fZQoaAZoCWgPQwisHcU56oQ5wJSGlFKUaBVLbmgWR0B4IfCaZx7zdX2UKGgGaAloD0MIxLEubqNxNcCUhpRSlGgVS2ZoFkdAeCdEpy6tknV9lChoBmgJaA9DCEaaeAc4KIDAlIaUUpRoFUsxaBZHQHgntvXK8th1fZQoaAZoCWgPQwhf1O5XAbZAwJSGlFKUaBVLZWgWR0B4K7jS5RTCdX2UKGgGaAloD0MIUDqRYOoPgMCUhpRSlGgVSzBoFkdAeDCm1IAfdXV9lChoBmgJaA9DCE890uC2ijjAlIaUUpRoFUtxaBZHQHg3rteD3/R1fZQoaAZoCWgPQwhSfHxCdn45wJSGlFKUaBVLZ2gWR0B4PK3Ytg8bdX2UKGgGaAloD0MIXyUfu+tLgMCUhpRSlGgVSzxoFkdAeD0byYoiLXV9lChoBmgJaA9DCI81I4PcrTTAlIaUUpRoFUtWaBZHQHg9crRSgoR1ZS4=" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>", |
|
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" |
|
}, |
|
"_n_updates": 130, |
|
"n_steps": 2048, |
|
"gamma": 0.99, |
|
"gae_lambda": 0.95, |
|
"ent_coef": 0.0, |
|
"vf_coef": 0.5, |
|
"max_grad_norm": 0.5, |
|
"batch_size": 64, |
|
"n_epochs": 10, |
|
"clip_range": { |
|
":type:": "<class 'function'>", |
|
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" |
|
}, |
|
"clip_range_vf": null, |
|
"normalize_advantage": true, |
|
"target_kl": null |
|
} |