culteejen commited on
Commit
0f4fadb
1 Parent(s): 00c8dd1

Upload model to Hugging Face

Browse files
PPO-long-goal.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d25f5b9b57862ce45ebfc21a37213d5dda063de26069d10465ac9a9628aa1e6d
3
+ size 150413
PPO-long-goal/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-long-goal/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d3ace5240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d3ace52d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d3ace5360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d3ace53f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3d3ace5480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3d3ace5510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d3ace55a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d3ace5630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3d3ace56c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d3ace5750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d3ace57e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d3ace5870>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3d3acd2380>"
21
+ },
22
+ "verbose": true,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 10
30
+ ],
31
+ "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
32
+ "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
33
+ "bounded_below": "[ True True True True True True True True True True]",
34
+ "bounded_above": "[ True True True True True True True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 106496,
47
+ "_total_timesteps": 100000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1681945737358978794,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAIFqpUK0vwvAAADIQu3nEEIZfbZBOpeVQRwKC0IAAMhCAADIQgAAyEKJz6BCIh7KvwAAyEJScqxBcvBVQZzriEE9ReNBAADIQgAAyEIAAMhCpTG2Qi8CCcAAAMhCOUMXQjGzkUEE2ulByDtKQgAAyEIAAMhCAADIQhQMn0LvZwzAAADIQmjf50Hq+YhBPrK3QaxR2EEAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0649599999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHLRXH4+FiECUhpRSlIwBbJRNLQGMAXSUR0B0fwp4KQaKdX2UKGgGaAloD0MIKGGm7b/MiECUhpRSlGgVTS0BaBZHQHSOsx9G7SR1fZQoaAZoCWgPQwixwFd06+yHQJSGlFKUaBVNLQFoFkdAdJLLr5ZbIXV9lChoBmgJaA9DCDCEnPf/oIhAlIaUUpRoFU0tAWgWR0B0lntlZowmdX2UKGgGaAloD0MIz0iERnCOiUCUhpRSlGgVTS0BaBZHQHTBUU0vXbx1fZQoaAZoCWgPQwiESIYcu7eIQJSGlFKUaBVNLQFoFkdAdM0CyQgcLnV9lChoBmgJaA9DCA4SonxhPYlAlIaUUpRoFU0tAWgWR0B00BQMx46fdX2UKGgGaAloD0MIr0Sg+uc5iECUhpRSlGgVTS0BaBZHQHTSfFJg9eR1fZQoaAZoCWgPQwgN/RNcDGmIQJSGlFKUaBVNLQFoFkdAdOurxAjY7XV9lChoBmgJaA9DCIwwRbk0DohAlIaUUpRoFU0tAWgWR0B0+CGoJiRXdX2UKGgGaAloD0MI+1xtxb44iECUhpRSlGgVTS0BaBZHQHT7KtT1kDp1fZQoaAZoCWgPQwj/JD53glKIQJSGlFKUaBVNLQFoFkdAdP77rLQokXV9lChoBmgJaA9DCEg17PdEc4lAlIaUUpRoFU0tAWgWR0B1K9cdHUc5dX2UKGgGaAloD0MI88e0Ns3wiECUhpRSlGgVTS0BaBZHQHU8HEl3Qld1fZQoaAZoCWgPQwhEiCtnDxeIQJSGlFKUaBVNLQFoFkdAdT8mWdEsrnV9lChoBmgJaA9DCCKl2Tyu5YhAlIaUUpRoFU0tAWgWR0B1QmXC0ngHdX2UKGgGaAloD0MIM1GE1M0rikCUhpRSlGgVTS0BaBZHQHYNz67/XGx1fZQoaAZoCWgPQwgejUP9DqSKQJSGlFKUaBVNLQFoFkdAdiAraufVZ3V9lChoBmgJaA9DCCwMkdPXAolAlIaUUpRoFU0tAWgWR0B2Jalj3EhrdX2UKGgGaAloD0MIdSDrqbUWikCUhpRSlGgVTS0BaBZHQHYqNZV4oql1fZQoaAZoCWgPQwjuXBjppVuJQJSGlFKUaBVNLQFoFkdAdlyh24d6s3V9lChoBmgJaA9DCHZUNUEUuolAlIaUUpRoFU0tAWgWR0B2bCCkGiYcdX2UKGgGaAloD0MI9KW3P3cgh0CUhpRSlGgVTS0BaBZHQHZxbONYKY11fZQoaAZoCWgPQwihE0IH3fuIQJSGlFKUaBVNLQFoFkdAdnVEKE3843V9lChoBmgJaA9DCB07qMR1fYlAlIaUUpRoFU0tAWgWR0B2oT8Jlar4dX2UKGgGaAloD0MIrBqEuZ3wiECUhpRSlGgVTS0BaBZHQHatoJiRW911fZQoaAZoCWgPQwjJPV3dUTGFQJSGlFKUaBVNLQFoFkdAdrIzwtrbg3V9lChoBmgJaA9DCB5QNuVKholAlIaUUpRoFU0tAWgWR0B2tem2sq8UdX2UKGgGaAloD0MIbCOe7CadiECUhpRSlGgVTS0BaBZHQHbehlMAWBV1fZQoaAZoCWgPQwijc36Kw/yHQJSGlFKUaBVNLQFoFkdAdu7r/sE7n3V9lChoBmgJaA9DCH16bMsgLopAlIaUUpRoFU0tAWgWR0B28+iM5wOwdX2UKGgGaAloD0MIpYeh1YmwiECUhpRSlGgVTS0BaBZHQHb3xoAXEZR1fZQoaAZoCWgPQwgxX16APSuHQJSGlFKUaBVNLQFoFkdAdyrlrM1TBXV9lChoBmgJaA9DCCMsKuK0rIlAlIaUUpRoFU0tAWgWR0B3OlpTMqz7dX2UKGgGaAloD0MI6GwBoRVAiUCUhpRSlGgVTS0BaBZHQHc/aWkadc11fZQoaAZoCWgPQwhDjUKSWdKIQJSGlFKUaBVNLQFoFkdAd0Io7FKkEnV9lChoBmgJaA9DCDunWaBdmIdAlIaUUpRoFU0tAWgWR0B3a0AKfFrEdX2UKGgGaAloD0MIG2ZoPBEuiUCUhpRSlGgVTS0BaBZHQHd6mqcVgx91fZQoaAZoCWgPQwi5GW7Ax3qJQJSGlFKUaBVNLQFoFkdAd37qX4TK1XV9lChoBmgJaA9DCGoV/aEZj4lAlIaUUpRoFU0tAWgWR0B3giT5ftx/dX2UKGgGaAloD0MI5pSAmEQTiUCUhpRSlGgVTS0BaBZHQHegpyyUs4F1fZQoaAZoCWgPQwgSa/EpgH+IQJSGlFKUaBVNLQFoFkdAd6r26TW5H3V9lChoBmgJaA9DCATnjCgtPYlAlIaUUpRoFU0tAWgWR0B3roEyLyc1dX2UKGgGaAloD0MI7DL8p7tQiECUhpRSlGgVTS0BaBZHQHexFZcLSeB1fZQoaAZoCWgPQwi2Zisv+QuJQJSGlFKUaBVNLQFoFkdAeFODrJKaonV9lChoBmgJaA9DCM0d/S8Xg4ZAlIaUUpRoFU0tAWgWR0B4XMi4axX5dX2UKGgGaAloD0MIey++aC+eiECUhpRSlGgVTS0BaBZHQHhf/9UCJXR1fZQoaAZoCWgPQwjYne48seGJQJSGlFKUaBVNLQFoFkdAeGI9F4LThHV9lChoBmgJaA9DCEdX6e66yIlAlIaUUpRoFU0tAWgWR0B4gPSqlxffdX2UKGgGaAloD0MIbmjKTj/6dkCUhpRSlGgVSydoFkdAeIbYBvJiiXV9lChoBmgJaA9DCDiFlQrqgYlAlIaUUpRoFU0tAWgWR0B4ixomG/N8dX2UKGgGaAloD0MIPzc0ZUdUikCUhpRSlGgVTS0BaBZHQHiOyExqO951fZQoaAZoCWgPQwiC/de5KUGJQJSGlFKUaBVNLQFoFkdAeJGLPldTpHV9lChoBmgJaA9DCIpYxLAD24lAlIaUUpRoFU0tAWgWR0B4vxflZHNHdX2UKGgGaAloD0MIAfc8f/r9iECUhpRSlGgVTS0BaBZHQHjGhLbpNbl1fZQoaAZoCWgPQwiwcf27nkyKQJSGlFKUaBVNLQFoFkdAeMw4NZvDQHV9lChoBmgJaA9DCF+YTBUMtopAlIaUUpRoFU0tAWgWR0B4z+86FM7EdX2UKGgGaAloD0MI2PSgoBSnikCUhpRSlGgVTS0BaBZHQHkBITXarWB1fZQoaAZoCWgPQwigi4aMx0WKQJSGlFKUaBVNLQFoFkdAeQdGoJiRXHV9lChoBmgJaA9DCF9iLNMv94lAlIaUUpRoFU0tAWgWR0B5DJftx+8XdX2UKGgGaAloD0MIisvxCmRUiUCUhpRSlGgVTS0BaBZHQHkQMo+fRNR1fZQoaAZoCWgPQwjbhlEQPBKKQJSGlFKUaBVNLQFoFkdAeUF8zyjHn3V9lChoBmgJaA9DCEJeDyZlEolAlIaUUpRoFU0tAWgWR0B5RyfZmI0qdX2UKGgGaAloD0MIoTGTqHc4iECUhpRSlGgVTS0BaBZHQHlL7PQfIS11fZQoaAZoCWgPQwhY5q26LkKKQJSGlFKUaBVNLQFoFkdAeU+MNMGorHV9lChoBmgJaA9DCLvQXKeR7olAlIaUUpRoFU0tAWgWR0B5cuXRgJC0dX2UKGgGaAloD0MIPzp15ZPmhkCUhpRSlGgVTS0BaBZHQHl3dCu2ZzB1fZQoaAZoCWgPQwhwB+qUZ9mJQJSGlFKUaBVNLQFoFkdAeXpx6v7m+3V9lChoBmgJaA9DCO+NIQBYMotAlIaUUpRoFU0tAWgWR0B5fPg9/z8QdX2UKGgGaAloD0MI100pr5VceECUhpRSlGgVSyNoFkdAeYHq6vq1PXV9lChoBmgJaA9DCCZXsfgtxIhAlIaUUpRoFU0tAWgWR0B5pHu7YkE+dX2UKGgGaAloD0MIZAW/DfHRiECUhpRSlGgVTS0BaBZHQHmphcZ9/jN1fZQoaAZoCWgPQwghrweTYkuIQJSGlFKUaBVNLQFoFkdAek4H93r2QHV9lChoBmgJaA9DCFBxHHj1jXRAlIaUUpRoFUscaBZHQHpR5sj3VTd1fZQoaAZoCWgPQwhrfZHQduiJQJSGlFKUaBVNLQFoFkdAelUk8Rtgr3V9lChoBmgJaA9DCKFJYkk5kIpAlIaUUpRoFU0tAWgWR0B6eaB19v0idX2UKGgGaAloD0MI5+CZ0GQIiUCUhpRSlGgVTS0BaBZHQHp/nc1wYLt1fZQoaAZoCWgPQwguyJblK7GKQJSGlFKUaBVNLQFoFkdAeokxdpqREHV9lChoBmgJaA9DCKqezD8ai4lAlIaUUpRoFU0tAWgWR0B6jo51eSjhdX2UKGgGaAloD0MIgQcGEL4ZiUCUhpRSlGgVTS0BaBZHQHq3sYZVGTd1fZQoaAZoCWgPQwh2GmmpHFmJQJSGlFKUaBVNLQFoFkdAer46iTMaCXV9lChoBmgJaA9DCLE1W3kpy4pAlIaUUpRoFU0tAWgWR0B6yGIWP91mdX2UKGgGaAloD0MIjV2ieit1ikCUhpRSlGgVTS0BaBZHQHrNZgkTpPh1fZQoaAZoCWgPQwgHKA01ShyKQJSGlFKUaBVNLQFoFkdAevaqGUOd5XV9lChoBmgJaA9DCKWhRiGJfnRAlIaUUpRoFUscaBZHQHr8SI+GGmF1fZQoaAZoCWgPQwgbSu1FlEmJQJSGlFKUaBVNLQFoFkdAevyNFz+3pnV9lChoBmgJaA9DCInS3uAr+4lAlIaUUpRoFU0tAWgWR0B7CBzS1E3LdX2UKGgGaAloD0MINh/XhipUikCUhpRSlGgVTS0BaBZHQHsNHOObRWt1fZQoaAZoCWgPQwhEqFKzp1WKQJSGlFKUaBVNLQFoFkdAezlioKlYU3V9lChoBmgJaA9DCDlHHR037ohAlIaUUpRoFU0tAWgWR0B7OZglWwNcdX2UKGgGaAloD0MIBcHj2xvJh0CUhpRSlGgVTS0BaBZHQHtCaDbrTph1fZQoaAZoCWgPQwiySBPvIKOIQJSGlFKUaBVNLQFoFkdAe0bXD3ueBnV9lChoBmgJaA9DCLIRiNdV54hAlIaUUpRoFU0tAWgWR0B7cgH6dlNDdX2UKGgGaAloD0MI2GK3z4rGiECUhpRSlGgVTS0BaBZHQHtyadlNDdB1fZQoaAZoCWgPQwjqdvaVpwGKQJSGlFKUaBVNLQFoFkdAe3zbiqABk3V9lChoBmgJaA9DCIaOHVSiDYlAlIaUUpRoFU0tAWgWR0B7gnR/mT1TdX2UKGgGaAloD0MInmLVIKzniECUhpRSlGgVTS0BaBZHQHutx5HEuQJ1fZQoaAZoCWgPQwgmbhXEwC+JQJSGlFKUaBVNLQFoFkdAe66AC4jKPnV9lChoBmgJaA9DCFbUYBqm3YpAlIaUUpRoFU0tAWgWR0B7tzvphWo4dX2UKGgGaAloD0MI+oBAZzL1h0CUhpRSlGgVTS0BaBZHQHu7F98Z1mt1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1010,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.5,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-long-goal/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f3456bfcd4c227651412955ca4f08dfec3454828814a004e283192969c9a85
3
+ size 90105
PPO-long-goal/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58864d6e70c87545e7c4f79421e294ad5937918d80a11ee53371686a5d59fd05
3
+ size 44417
PPO-long-goal/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-long-goal/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - RoombaAToB-long-goal
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: RoombaAToB-long-goal
16
+ type: RoombaAToB-long-goal
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 792.87 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **RoombaAToB-long-goal**
25
+ This is a trained model of a **PPO** agent playing **RoombaAToB-long-goal**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3d3ace5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3d3ace52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3d3ace5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3d3ace53f0>", "_build": "<function ActorCriticPolicy._build at 0x7f3d3ace5480>", "forward": "<function ActorCriticPolicy.forward at 0x7f3d3ace5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3d3ace55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3d3ace5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3d3ace56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3d3ace5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3d3ace57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3d3ace5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3d3acd2380>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681945737358978794, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAIFqpUK0vwvAAADIQu3nEEIZfbZBOpeVQRwKC0IAAMhCAADIQgAAyEKJz6BCIh7KvwAAyEJScqxBcvBVQZzriEE9ReNBAADIQgAAyEIAAMhCpTG2Qi8CCcAAAMhCOUMXQjGzkUEE2ulByDtKQgAAyEIAAMhCAADIQhQMn0LvZwzAAADIQmjf50Hq+YhBPrK3QaxR2EEAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHLRXH4+FiECUhpRSlIwBbJRNLQGMAXSUR0B0fwp4KQaKdX2UKGgGaAloD0MIKGGm7b/MiECUhpRSlGgVTS0BaBZHQHSOsx9G7SR1fZQoaAZoCWgPQwixwFd06+yHQJSGlFKUaBVNLQFoFkdAdJLLr5ZbIXV9lChoBmgJaA9DCDCEnPf/oIhAlIaUUpRoFU0tAWgWR0B0lntlZowmdX2UKGgGaAloD0MIz0iERnCOiUCUhpRSlGgVTS0BaBZHQHTBUU0vXbx1fZQoaAZoCWgPQwiESIYcu7eIQJSGlFKUaBVNLQFoFkdAdM0CyQgcLnV9lChoBmgJaA9DCA4SonxhPYlAlIaUUpRoFU0tAWgWR0B00BQMx46fdX2UKGgGaAloD0MIr0Sg+uc5iECUhpRSlGgVTS0BaBZHQHTSfFJg9eR1fZQoaAZoCWgPQwgN/RNcDGmIQJSGlFKUaBVNLQFoFkdAdOurxAjY7XV9lChoBmgJaA9DCIwwRbk0DohAlIaUUpRoFU0tAWgWR0B0+CGoJiRXdX2UKGgGaAloD0MI+1xtxb44iECUhpRSlGgVTS0BaBZHQHT7KtT1kDp1fZQoaAZoCWgPQwj/JD53glKIQJSGlFKUaBVNLQFoFkdAdP77rLQokXV9lChoBmgJaA9DCEg17PdEc4lAlIaUUpRoFU0tAWgWR0B1K9cdHUc5dX2UKGgGaAloD0MI88e0Ns3wiECUhpRSlGgVTS0BaBZHQHU8HEl3Qld1fZQoaAZoCWgPQwhEiCtnDxeIQJSGlFKUaBVNLQFoFkdAdT8mWdEsrnV9lChoBmgJaA9DCCKl2Tyu5YhAlIaUUpRoFU0tAWgWR0B1QmXC0ngHdX2UKGgGaAloD0MIM1GE1M0rikCUhpRSlGgVTS0BaBZHQHYNz67/XGx1fZQoaAZoCWgPQwgejUP9DqSKQJSGlFKUaBVNLQFoFkdAdiAraufVZ3V9lChoBmgJaA9DCCwMkdPXAolAlIaUUpRoFU0tAWgWR0B2Jalj3EhrdX2UKGgGaAloD0MIdSDrqbUWikCUhpRSlGgVTS0BaBZHQHYqNZV4oql1fZQoaAZoCWgPQwjuXBjppVuJQJSGlFKUaBVNLQFoFkdAdlyh24d6s3V9lChoBmgJaA9DCHZUNUEUuolAlIaUUpRoFU0tAWgWR0B2bCCkGiYcdX2UKGgGaAloD0MI9KW3P3cgh0CUhpRSlGgVTS0BaBZHQHZxbONYKY11fZQoaAZoCWgPQwihE0IH3fuIQJSGlFKUaBVNLQFoFkdAdnVEKE3843V9lChoBmgJaA9DCB07qMR1fYlAlIaUUpRoFU0tAWgWR0B2oT8Jlar4dX2UKGgGaAloD0MIrBqEuZ3wiECUhpRSlGgVTS0BaBZHQHatoJiRW911fZQoaAZoCWgPQwjJPV3dUTGFQJSGlFKUaBVNLQFoFkdAdrIzwtrbg3V9lChoBmgJaA9DCB5QNuVKholAlIaUUpRoFU0tAWgWR0B2tem2sq8UdX2UKGgGaAloD0MIbCOe7CadiECUhpRSlGgVTS0BaBZHQHbehlMAWBV1fZQoaAZoCWgPQwijc36Kw/yHQJSGlFKUaBVNLQFoFkdAdu7r/sE7n3V9lChoBmgJaA9DCH16bMsgLopAlIaUUpRoFU0tAWgWR0B28+iM5wOwdX2UKGgGaAloD0MIpYeh1YmwiECUhpRSlGgVTS0BaBZHQHb3xoAXEZR1fZQoaAZoCWgPQwgxX16APSuHQJSGlFKUaBVNLQFoFkdAdyrlrM1TBXV9lChoBmgJaA9DCCMsKuK0rIlAlIaUUpRoFU0tAWgWR0B3OlpTMqz7dX2UKGgGaAloD0MI6GwBoRVAiUCUhpRSlGgVTS0BaBZHQHc/aWkadc11fZQoaAZoCWgPQwhDjUKSWdKIQJSGlFKUaBVNLQFoFkdAd0Io7FKkEnV9lChoBmgJaA9DCDunWaBdmIdAlIaUUpRoFU0tAWgWR0B3a0AKfFrEdX2UKGgGaAloD0MIG2ZoPBEuiUCUhpRSlGgVTS0BaBZHQHd6mqcVgx91fZQoaAZoCWgPQwi5GW7Ax3qJQJSGlFKUaBVNLQFoFkdAd37qX4TK1XV9lChoBmgJaA9DCGoV/aEZj4lAlIaUUpRoFU0tAWgWR0B3giT5ftx/dX2UKGgGaAloD0MI5pSAmEQTiUCUhpRSlGgVTS0BaBZHQHegpyyUs4F1fZQoaAZoCWgPQwgSa/EpgH+IQJSGlFKUaBVNLQFoFkdAd6r26TW5H3V9lChoBmgJaA9DCATnjCgtPYlAlIaUUpRoFU0tAWgWR0B3roEyLyc1dX2UKGgGaAloD0MI7DL8p7tQiECUhpRSlGgVTS0BaBZHQHexFZcLSeB1fZQoaAZoCWgPQwi2Zisv+QuJQJSGlFKUaBVNLQFoFkdAeFODrJKaonV9lChoBmgJaA9DCM0d/S8Xg4ZAlIaUUpRoFU0tAWgWR0B4XMi4axX5dX2UKGgGaAloD0MIey++aC+eiECUhpRSlGgVTS0BaBZHQHhf/9UCJXR1fZQoaAZoCWgPQwjYne48seGJQJSGlFKUaBVNLQFoFkdAeGI9F4LThHV9lChoBmgJaA9DCEdX6e66yIlAlIaUUpRoFU0tAWgWR0B4gPSqlxffdX2UKGgGaAloD0MIbmjKTj/6dkCUhpRSlGgVSydoFkdAeIbYBvJiiXV9lChoBmgJaA9DCDiFlQrqgYlAlIaUUpRoFU0tAWgWR0B4ixomG/N8dX2UKGgGaAloD0MIPzc0ZUdUikCUhpRSlGgVTS0BaBZHQHiOyExqO951fZQoaAZoCWgPQwiC/de5KUGJQJSGlFKUaBVNLQFoFkdAeJGLPldTpHV9lChoBmgJaA9DCIpYxLAD24lAlIaUUpRoFU0tAWgWR0B4vxflZHNHdX2UKGgGaAloD0MIAfc8f/r9iECUhpRSlGgVTS0BaBZHQHjGhLbpNbl1fZQoaAZoCWgPQwiwcf27nkyKQJSGlFKUaBVNLQFoFkdAeMw4NZvDQHV9lChoBmgJaA9DCF+YTBUMtopAlIaUUpRoFU0tAWgWR0B4z+86FM7EdX2UKGgGaAloD0MI2PSgoBSnikCUhpRSlGgVTS0BaBZHQHkBITXarWB1fZQoaAZoCWgPQwigi4aMx0WKQJSGlFKUaBVNLQFoFkdAeQdGoJiRXHV9lChoBmgJaA9DCF9iLNMv94lAlIaUUpRoFU0tAWgWR0B5DJftx+8XdX2UKGgGaAloD0MIisvxCmRUiUCUhpRSlGgVTS0BaBZHQHkQMo+fRNR1fZQoaAZoCWgPQwjbhlEQPBKKQJSGlFKUaBVNLQFoFkdAeUF8zyjHn3V9lChoBmgJaA9DCEJeDyZlEolAlIaUUpRoFU0tAWgWR0B5RyfZmI0qdX2UKGgGaAloD0MIoTGTqHc4iECUhpRSlGgVTS0BaBZHQHlL7PQfIS11fZQoaAZoCWgPQwhY5q26LkKKQJSGlFKUaBVNLQFoFkdAeU+MNMGorHV9lChoBmgJaA9DCLvQXKeR7olAlIaUUpRoFU0tAWgWR0B5cuXRgJC0dX2UKGgGaAloD0MIPzp15ZPmhkCUhpRSlGgVTS0BaBZHQHl3dCu2ZzB1fZQoaAZoCWgPQwhwB+qUZ9mJQJSGlFKUaBVNLQFoFkdAeXpx6v7m+3V9lChoBmgJaA9DCO+NIQBYMotAlIaUUpRoFU0tAWgWR0B5fPg9/z8QdX2UKGgGaAloD0MI100pr5VceECUhpRSlGgVSyNoFkdAeYHq6vq1PXV9lChoBmgJaA9DCCZXsfgtxIhAlIaUUpRoFU0tAWgWR0B5pHu7YkE+dX2UKGgGaAloD0MIZAW/DfHRiECUhpRSlGgVTS0BaBZHQHmphcZ9/jN1fZQoaAZoCWgPQwghrweTYkuIQJSGlFKUaBVNLQFoFkdAek4H93r2QHV9lChoBmgJaA9DCFBxHHj1jXRAlIaUUpRoFUscaBZHQHpR5sj3VTd1fZQoaAZoCWgPQwhrfZHQduiJQJSGlFKUaBVNLQFoFkdAelUk8Rtgr3V9lChoBmgJaA9DCKFJYkk5kIpAlIaUUpRoFU0tAWgWR0B6eaB19v0idX2UKGgGaAloD0MI5+CZ0GQIiUCUhpRSlGgVTS0BaBZHQHp/nc1wYLt1fZQoaAZoCWgPQwguyJblK7GKQJSGlFKUaBVNLQFoFkdAeokxdpqREHV9lChoBmgJaA9DCKqezD8ai4lAlIaUUpRoFU0tAWgWR0B6jo51eSjhdX2UKGgGaAloD0MIgQcGEL4ZiUCUhpRSlGgVTS0BaBZHQHq3sYZVGTd1fZQoaAZoCWgPQwh2GmmpHFmJQJSGlFKUaBVNLQFoFkdAer46iTMaCXV9lChoBmgJaA9DCLE1W3kpy4pAlIaUUpRoFU0tAWgWR0B6yGIWP91mdX2UKGgGaAloD0MIjV2ieit1ikCUhpRSlGgVTS0BaBZHQHrNZgkTpPh1fZQoaAZoCWgPQwgHKA01ShyKQJSGlFKUaBVNLQFoFkdAevaqGUOd5XV9lChoBmgJaA9DCKWhRiGJfnRAlIaUUpRoFUscaBZHQHr8SI+GGmF1fZQoaAZoCWgPQwgbSu1FlEmJQJSGlFKUaBVNLQFoFkdAevyNFz+3pnV9lChoBmgJaA9DCInS3uAr+4lAlIaUUpRoFU0tAWgWR0B7CBzS1E3LdX2UKGgGaAloD0MINh/XhipUikCUhpRSlGgVTS0BaBZHQHsNHOObRWt1fZQoaAZoCWgPQwhEqFKzp1WKQJSGlFKUaBVNLQFoFkdAezlioKlYU3V9lChoBmgJaA9DCDlHHR037ohAlIaUUpRoFU0tAWgWR0B7OZglWwNcdX2UKGgGaAloD0MIBcHj2xvJh0CUhpRSlGgVTS0BaBZHQHtCaDbrTph1fZQoaAZoCWgPQwiySBPvIKOIQJSGlFKUaBVNLQFoFkdAe0bXD3ueBnV9lChoBmgJaA9DCLIRiNdV54hAlIaUUpRoFU0tAWgWR0B7cgH6dlNDdX2UKGgGaAloD0MI2GK3z4rGiECUhpRSlGgVTS0BaBZHQHtyadlNDdB1fZQoaAZoCWgPQwjqdvaVpwGKQJSGlFKUaBVNLQFoFkdAe3zbiqABk3V9lChoBmgJaA9DCIaOHVSiDYlAlIaUUpRoFU0tAWgWR0B7gnR/mT1TdX2UKGgGaAloD0MInmLVIKzniECUhpRSlGgVTS0BaBZHQHutx5HEuQJ1fZQoaAZoCWgPQwgmbhXEwC+JQJSGlFKUaBVNLQFoFkdAe66AC4jKPnV9lChoBmgJaA9DCFbUYBqm3YpAlIaUUpRoFU0tAWgWR0B7tzvphWo4dX2UKGgGaAloD0MI+oBAZzL1h0CUhpRSlGgVTS0BaBZHQHu7F98Z1mt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1010, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (655 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 792.8653044579121, "std_reward": 1.1368683772161603e-13, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T16:16:49.412834"}