PPO trained on the Lunar Lander module
Browse files- README.md +37 -0
- config.json +1 -0
- initial_model.zip +3 -0
- initial_model/_stable_baselines3_version +1 -0
- initial_model/data +94 -0
- initial_model/policy.optimizer.pth +3 -0
- initial_model/policy.pth +3 -0
- initial_model/pytorch_variables.pth +3 -0
- initial_model/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 170.23 +/- 14.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f20da8c2820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f20da8c28b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f20da8c2940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f20da8c29d0>", "_build": "<function ActorCriticPolicy._build at 0x7f20da8c2a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f20da8c2af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f20da8c2b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f20da8c2c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f20da8c2ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f20da8c2d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f20da8c2dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f20da8bf420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAGI/6uV9PvmSo4AcF9aPSaD6Nj2i5fbD4MHEQOewGpvBWa9RouICqeTDh3wfFP5LQtLsZKLzLQN69Wu8hP8KatI/ygrmHBEvFkAyJxOcIK5X3zkijboxNBo+pSbIjCj0gfvHvD44GwylYIFaPoKhyomWl5IM13koWOe487a7kf9Be10EQWMCJHtoxkNR/Jr+0++xipJDqtZmDUX+irSgNdHlkcU5zK9Hppo1Umt2x2jg6xb8gOgsI8+AmP9Yn7s9fQ1yLtH64hD4Vh1XqVIs/NnCzKinfTZdT8bHECFDj23rJLgA8yl0rifVqq87x4aLw7yHvmmoWPLQygSzVXALxRWsP0NBbR5iVGE3czC6gzArllhmplzwTg1yehQGi7/6oPTJ9RQeeyuzX6qJCuTsxRZh4+S3lyRmSzk3iWLsGIHpsA0IJu1VpYw2U5nnMHM6jZ7nh6onVhBXmrWrixoZ0ePODEVQSqYAYXHbIyDJAv6VdfEDkIBgOGJ+aEgSYhGTwkwS0ijer4a7TGtQbUpys/qghHlcljuE+KlBoMyZUlcRNGbmNd4CgmLITYWseaD5kPqOxEtcTxpofmf21J7tPSMaUwgeq6CQwVroO4euaPs1em3+EYtW/Qholf1ksSvRZymvhdxXrbuWiU56zo/qfGpu1/MFofXgvH+oExPG4uRyScGWNjFi9zYKssUULTPNTGnXrRqSCsYI3FI3kb1lrpVtY0dK1SRZTtpqUL3Nm5022klCgMXFm/AsS5wreqdL2Msz5jk/aSXpv9idX77/qMmDuxT0BcTy/nkY7GPMc6oJ6LW2EAP182cE+9RRmEDQmrcspjkRyTnNMj4e7aqTPoC/Afhls+JRd0z0JQv1NdeJAfON3yalM5QKD2/tJNZD9/wBQT1ODe921cwfDd3eks12EJJhc+rnkQkH6ouxoE0zKdp9tsvKlzlU6Na+raO75W6YPePEitiQZAzwZ1r3Bqw3DnVoc13+ELGya5Nq/sod6Kv6epBkI1GkXLj8GaMuppMNx/L42+IFM7YYSX7yaXcsuPCiQrv9HxmXCDp0+8IOBuj4xFnCsGmi+9y0TUfCXQCLHUYxeGZXa4r/PpndzkMcmZo8Ia+bo/oewrfyiKd4VGfYjB7yRIX6ir7lCMvXFLjxuNST8OKAbxWEL2uG91hu3cm+bNQj/i0r1RQCmKDz8r9mSAIDYFdECMEE58W3QKJg8PAjMIjIlgEzJjnwJjcmemClLaIRlgNfcARqdUuZl7SUF0tfSQCTs/qHlaU8wAxz5oS67O3ZG01Slm5PrhD4hgIyHfu/OyyixruKSNjgd2Bwku+oUVMKSrM3CbwoeYJvUDBBCXivEVxxiVmkl3a4rRgmNGmp5yu6OG0OhXW3DN+ndtRFphqn/Vh1/TRtRfCcFqs9loL0hPXEVzGBdAxYFUe3xOZGARYtjLDjke1BFZSOK9Cseh83dczcRiY1KijWnWCSS3bmi77s+wCy5cq1NRdyeMyiVPFN5Sl9TEitg+0XGQR8EiSlXuSHufvOoTVom99LYgTr3Qh6WvH6tvEacKVsnNsMuAxESKWwVAoI/WViZIorhSY74wrRIXBd8Fy/joNpk7vPeJvhii0j0ryAU3Ps1bDOdA6BvjvIxsyRXDcnkSXyS94DJyoZeF/05x1DZ8b1/moGmDMkvoypoOaBZpIQsQX5OnKQ44D0x6D2cK+rhfd7NQQ+Iqfxu8O1YQkOMu9XpS6lMBo5AlNeMyqUkb9o4rF99ZSRHit1CVba94RFxbj+j6+KJEKz7Q2zTO2pgPMhPV0ODyTnyFaGyXZc63fV09wy/UAQpc0+T7H6A4d+0GZGcxB9fP8aCvwaPsOGZwEUjr5Z1DfqNXmCNEqa/yKAlFVNTp2jGxWGIS/7YUrzRGi8qodImuyEuqzLiA5y7bCf5A9vrQFBpyq8RqYSH4sKThu1zstvWYUA4E2RC1gf74tfxTN1A85ghmW8fassERhSBy3RXY9ClqMGva8ZnJAFEroUrKSJHsYFWCPRpnmldiTO8y0SEUUMG3Yk2QnbHxmAPdDWs+IcTqgO3nY+Ntam8rE/KHHKvJh+6a/sslCi9UFXLLbFPaZydf/hNGJPhSACItUXA+hhxKtMaVZDI79DqjNBdDPDCgQJxsltgCrTabptvGR7TlwEU0K0aNtIOkrST+c7/IEGHmybAQxbVxNMWgJux3WYVxc2SD0zSYAEaTFnH6lisf/mGW6RJE7+52c1xhpMskkD8XvAuPRl/kmKJ7kczro88PThnDW0dZ17BKqaiDNOYzSxFesgntMWtHANwbpDoxW6ECxuF2Jw6ITbgRBkG/JSkG6NRFWtkpzFGAADRWhxDVmvHvPTfly8AK5NzhJv67igyzDipjahTIdCPZwOR5fInPQNwl6qhzvI1BQuciocrSeK45X99am/afWCfffnXlRA8xXPovs5oH9b399FXb/BSliDMMvAFneWIezelHnp9HU/Bjqz3l6hfOymZA5qIYT50F4bpxEPkYjcxAsZ5p7w9ia+Xk33pbcTlxO1Z5BbCZafCkoQWPf/vWsBPS08c2P3GhYhGvFhtPJFOmEQe9oAjcksi1gCW7ceGcNo9Q1dnFYfo1tSKike3iwQGiBHmWJzRV04gt7STy/Arv85pZJ9xpaFrF8cu5vKsqq5ituati4QxOi5wEy16+TkTrrC5OD1bRtgW7nzYqB1PFT+ONoxwfkxHTSCExbIxiamZjLyiZAIiGVm3LmMJpL1lcn5vhP7S4CQYZySxQD7OOljOPZ4cxreaCXFodrHFFEo+ttSqDbMMNbzI2cJyYaJRkUT9JeX5jDb086A5kt+xw8rfMVeoAjdBGXuFyUogVV1X0gmZMDwPjIy/EdmdgWxrOtWAmShtmXZsuAPu76ZcNdBN1dtelUmbBxQp9ijrm1s+6mC5DTIlwKSWJAiD58WDhY5IoJCbVuI3LZk7TF/PsT9IN7Shae8KJGtUqryxOEYj+m218i74sh6zi/PnrQxpQ63B5IcIfRVSYb3X1UHWVul3ffWBrmtv1PzaYNkyPD4mtE+nlgTX8p2D5rRXhBfC/H17fyXyka/cweC8geizBAgx2PRW0rFk4NQQommsaXb4PaAt8i8Eg1ma2DEkO4+rg24OcuRt/IX6RkkjG/oaJDx5/bBA6tHn775Pykl9Iya8W67Xdi89QnGe673APTI0MZthZcRuekslNmG1p25hAZowqFaLzB+OcnfK/UUI3sSq93S7HwTJCKVUPvckWvffLSoIpqqPZB5wO8Y6l11kj7+4zxME9CdcYHsLgQwSYAavRGvRrXY01BwEpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEscdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAHJ/VMczEquwz9tjk6MgsxaTKDPCf6Aa51VAdnptfpK06folkJM3Zl1F3lQ0hvqjiaoQcttdTCyFD37MqIC9sF84hnP/hZQ2efXhGczVrsLfRZakE0F+ItrvDww9uGr8oYa6/Z1xIzh9cFsg9PXbyT/IhDLGHSPbjDWzi7tglfWcFTP0FeU4QyzD0swsV9FQiBc+v/ekvxI8F8ZhzzWv+3B+nJQRDaGZViXCdv+JpmkJmMAnz2BQ5ty0PzONCHH/+Zi5q4v2tI9mqPmVKB2mbT4w4ozvX4sd0BDkxy4F+KUU+cXmL7YWkdBEAvAsoqTLSEN7hxp/ROXY5KIHL8uAp67qJotWha3AmRLM7xmAa5O3jT3QGTBI3GXHQ91pML4TbyDkRZzTVDslTJosRKas6ED99rmel1leCuAqRPGTgqe1SzCJNmcBcGSN1Be/EGN0Sw6bIPx5dCNdIOtKjRTjyLTL0P0XmBGiPHk7urn8v+vmuaHiY/E1axRzsD16e3FO/rbTUeXd0bOPuRn4ANTY/Qso4KB2mV+tYJJ6xltCYG53cxrENf4ot1jZWVHR67/za7+a3Ir8xTynMg6wCZvbuq9fSiKOh8vh9hr4ONgBfkJuwpcK/Gc7h+l8Jj044KvR+/uPsZJfeevGZvMOAKEIS2mVMsUuQVYzqKPqeJlkCF7dlf7LS6Y5/bNQpxrmFbj1b5li7gpbvQdi4qnk1myKlVvfjEbHtHwzBc89ZfhVlBAPkP8S1O3WGuOD7alQYAEXQNlBbuQ9giRRR7l9Kv4JjcRamiiBsRHPDIQK9gqXpa3U8+4L11gpjeOUweRxogx9jBi11dbBPRIPZTUdBe6bq/NQfME3GI9nfKvhiMofotaKMb8/qpLg2BhJTyUXGCv0t1YYf4o46+mNICVnBWEMfcZ0vLHan3pjDaRXurDxqfH7/uuP2FM6iITaL+sss3ACDu/JvqD6rYtz2LRVFyIvjNxgGbBa31KzdVeE13zq9my//JbgWgvLDyt620WiBjzNovfkW5kLlgAaYP42gHFIUYgymqSYN3fKBvZC6wC0mD9M6YbxopfmYYPDYFd4J7AOXoM5N31tC1sF24HXdlateYYrVMy/KhPXGFEjedFaAByweb42vZeyx9sstOi141wnRPdK5xwJQXjbDbXFp0CP7VmF50AUureQhIh9nF4nqQqoWZ9oMCiya5fr7grU3YOoYorRtfqiRM2p1kFtmynvVx/EcCuYCfLC5pvYKkmDCgd/7Fo07KCNML2krbYjrR7N372aPkJcBBolFOeWW5QVOwvNd6QAGmXkCNE4BYOVwSYyzoLljTRfLOLxCiz4Q+Y8FhnY3ghHqd+OzxH1rleNeLvJEIHODSxLkFShYFMpOJnkWFsd//0tHS/905FSeIMjIG8nDgD1kqHrr54LBmjp16G25cZrv+xhZyVNqs3aL1Da00EO9M0AOSlT21rQ1pw7HFHyF4TAnPAv6F6gF+u67S19IRiiCZcNwGwIMp/CTL+Lr2rJCaGtaxjYRTHC3FjtTy7I24YYzDi63hxDW0p7DMQTaLi+3KZv6GzZLjzB8WO4MEnDjNEYW81FVn+rw93IWgBq8xRj7rORXC2q8DtMTV1H8oMmovktPznY0+HaqYJJhzDIGYhIhK48ryyhi/HHTE83Ecvi0QoF7IGSXJMk8x8BOUUYMA6apOhvZ7ZE+6i1ZN4escQ4lz0IDvsssIBIFYtzr/8+UQJO4kqbrqGH/GiRjZHpMIIR8WqkDTnokC0THfVr1GdeLlWViXJP+j2J1nZrwnU4BrI2K9LvEJ5j+jjsr5C4nNTQlty0+ud6CVokDC6YTLO+e31P6v1oyUNCFsP0Mhlq6VvcRXnTH3VWidfMC27S08v3OYbRBY/5Ju+rj9DG2AjZ0OcGk6Is47ArlkrJ9COMjdJXqF6KExJEQZqheofwl0K4mHhd74UzTDKgFajk+ERpGyy0T/n/eGYQkQNOFqSXQ0Aw9I3dIDFWBxQlTcuDZTdNb7pKLkxpKIRvSgI+YBlm9z9AeLAfWFvvgDod9cf/RrA9xmcPH5WzIBqM/NwmaYMMjpBPLkSJfPCgLtuiksHQz6dZvJojsS97pSBCiXDcMg+mMG55+hlXVhLsxtvrh0UfEP3oMD/ah+lquDDKN+RG7fChbcOM21WapzwEjiopl5ispexeIRf8cqW8qr1FitDVHMqX3Y//IeSk9IsMElRpAZm18nPZD3KYxCkQT0mM8CBDAuj3ES4RtDUqp0HWVJu0GZbjnRrtmebyCfBSlSGee9EDYshSDeZDVi38+zlTpDQghbgNaGoFxmhBBbnfJAXU4jezhe3AGZnelS8//v5JKD8Wyp/34sKTCkwgsjdtMZhr+z7eDhup9IAyh2gAqLnCV9GSTYkdfjnpQuUdA+DBRECne7ioxYTgL6NAtceYg0HyiI+l1vFVzcXyboEyt9G2yUwiAREnIyWwI7bV2DWhsDRuRqhUu+135id77QyoG/hI+c3O5AUOlAO7gyOb6k3axXtTwTAfBS5/SeUscOKFxd8hgdjZ2JGJKvM6W7pqo9cKcwK/DifAtnDiXKP7BTroNteYo73nF7XxsilFt1/iE5tVVTjVUcQ+5PbV6D32QzqMH8KgTJcPQAAB6hYiVxsOsrEAJ/UJAO9M+GvyE+RQX6M2iVnii3hA9GFx84LiY7TUGFSNgxB2U41AXn2xACW6dJDlfKHNCZafizS17OE5p5UDfqdy9E+y2SMpT+xD+JtUApzy0jI9J7eD1fsZN39LWYojPVBzlU/3G2IA7ar894kTqXgjvw3mqD2LaUuhF6zucQmHTrU5frmz3EOE7pd5qiO8rjmmCsyKcpD94cR9l48xyrfTcSclrtAvT3/tYy+lSelgWSAtIlhlPnvR05i9vd67rC3DMq8CSJQ+hM6LDo+c0r5cCnYtenGWt3HbGB9UjGLHtwEctXYp/D6nbdQ2AtL3j1Az9BTE9kaYN7WTfD9hCgQiYUj3ps0HHFxy28lf7eCDi8iVMRr9TAiilfN8x0gtp7KpAikTpWLY3Y0VkSDZJKWvkImIs8mILTtpeNpmF+pMNMj63rjOl4ybiNhjoYrZVthf7tOVikwZ3sZ6Iha0piOySwoyGGPARciWxAEZ+LSvAdq6ej+xg9quCcoI00KsR0UcIFwJ6BYak3W3QLXPgQFWJWuQ6x4epyanBot7S3bUaS5DvhRSxon4520CrHQIFAc0H2VndlVDBmWAE24oFMHAg/l3J0hVvC395XBbEbYujSY7ENEKhv9XKhJgWPBP4/Za4mXR9M6DYIqNBwj9fWKzG30gElGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673056280321218913, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAHoywb4XKmU/bBkXPd2KC76S1SC+TAHEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy7xV16GmXECUhpRSlIwBbJRN6AOMAXSUR0CYVKbO/tY0dX2UKGgGaAloD0MI9zqpL0sqWUCUhpRSlGgVTegDaBZHQJhjij/Mnqp1fZQoaAZoCWgPQwhbfXVVoOxcQJSGlFKUaBVN6ANoFkdAmHBJ8Sf16HV9lChoBmgJaA9DCOzAOSPK6mVAlIaUUpRoFU3oA2gWR0CYe151/2CedX2UKGgGaAloD0MIU5PgDWlnYUCUhpRSlGgVTegDaBZHQJiGe5iExqR1fZQoaAZoCWgPQwg1lrA2xhFmQJSGlFKUaBVN6ANoFkdAmJFKScLBsXV9lChoBmgJaA9DCHak+s4vQiZAlIaUUpRoFU1CAWgWR0CYlOKPGQ0XdX2UKGgGaAloD0MIvkupS8YjXkCUhpRSlGgVTegDaBZHQJifN63RXwN1fZQoaAZoCWgPQwjswg/OJ3hgQJSGlFKUaBVN6ANoFkdAmKmiF49ovnV9lChoBmgJaA9DCCsYldSJM2VAlIaUUpRoFU3oA2gWR0CYtBqREF4cdX2UKGgGaAloD0MIVyb8Ur/JY0CUhpRSlGgVTegDaBZHQJi/LCZWq951fZQoaAZoCWgPQwh6jsh3KRdfQJSGlFKUaBVN6ANoFkdAmMu4pQUHp3V9lChoBmgJaA9DCPN2hNMCDmJAlIaUUpRoFU3oA2gWR0CY1xvd/J/5dX2UKGgGaAloD0MIdAmH3mIGYECUhpRSlGgVTegDaBZHQJjhARK6Fuh1fZQoaAZoCWgPQwiFtTF2wt5gQJSGlFKUaBVN6ANoFkdAmOuAB5ooNXV9lChoBmgJaA9DCIXq5uJvElxAlIaUUpRoFU3oA2gWR0CY9fn8baRIdX2UKGgGaAloD0MI8WjjiLV/Y0CUhpRSlGgVTegDaBZHQJkAHJGOMl11fZQoaAZoCWgPQwhkz57LVMpiQJSGlFKUaBVN6ANoFkdAmQpa3VkMC3V9lChoBmgJaA9DCK9DNSXZwGRAlIaUUpRoFU3oA2gWR0CZFAFI/Z/TdX2UKGgGaAloD0MIvcgE/BpZKcCUhpRSlGgVTR0BaBZHQJkXVvhqCYl1fZQoaAZoCWgPQwhHHogs0jpfQJSGlFKUaBVN6ANoFkdAmSMdlum78XV9lChoBmgJaA9DCEjeOZShjV9AlIaUUpRoFU3oA2gWR0CZLxP/aQFLdX2UKGgGaAloD0MIfa1LjdBFX0CUhpRSlGgVTegDaBZHQJk3FHEuQIV1fZQoaAZoCWgPQwjUEFX4M49WQJSGlFKUaBVN6ANoFkdAmUEWycCo0nV9lChoBmgJaA9DCAqFCDiEJF5AlIaUUpRoFU3oA2gWR0CZSs2jO9nLdX2UKGgGaAloD0MIErwhjQovW0CUhpRSlGgVTegDaBZHQJlWkudwvQF1fZQoaAZoCWgPQwj1KjI6ILJfQJSGlFKUaBVN6ANoFkdAmWHT7MxGlXV9lChoBmgJaA9DCEEQIEPHv2NAlIaUUpRoFU3oA2gWR0CZb5YnfEXMdX2UKGgGaAloD0MIoDL+fUY+YUCUhpRSlGgVTegDaBZHQJl4qC8OCoV1fZQoaAZoCWgPQwjgoL36+BBpQJSGlFKUaBVNqQFoFkdAmX0/ikwevXV9lChoBmgJaA9DCHXN5Jtt01tAlIaUUpRoFU3oA2gWR0CZhuJNTLntdX2UKGgGaAloD0MIn47HDFQaWkCUhpRSlGgVTegDaBZHQJmQlO32EkB1fZQoaAZoCWgPQwjSUQ5mE/9fQJSGlFKUaBVN6ANoFkdAmZp9+1Bt13V9lChoBmgJaA9DCI3sSstIZGRAlIaUUpRoFU3oA2gWR0CZpb5CF9KFdX2UKGgGaAloD0MI8nfvqLHjYUCUhpRSlGgVTegDaBZHQJmv4XqJMxp1fZQoaAZoCWgPQwjBq+XOTN5dQJSGlFKUaBVN6ANoFkdAmbquVkc0cnV9lChoBmgJaA9DCNf34SAhPFVAlIaUUpRoFU3oA2gWR0CZxiAlOXVtdX2UKGgGaAloD0MIzPEKRE+rXECUhpRSlGgVTegDaBZHQJnTTzxwyZd1fZQoaAZoCWgPQwixMa8jDkViQJSGlFKUaBVN6ANoFkdAmeE91loUSXV9lChoBmgJaA9DCOpBQSla5VZAlIaUUpRoFU3oA2gWR0CZ8M0nPVurdX2UKGgGaAloD0MIz72HS46TVUCUhpRSlGgVTegDaBZHQJn5mPEKmbd1fZQoaAZoCWgPQwiL4eoAiEdfQJSGlFKUaBVN6ANoFkdAmgNkYbbUPXV9lChoBmgJaA9DCLbZWIl5FFtAlIaUUpRoFU3oA2gWR0CaEtFa0QbudX2UKGgGaAloD0MIWvROBdzQXUCUhpRSlGgVTegDaBZHQJofES7GvOh1fZQoaAZoCWgPQwiespquJzZfQJSGlFKUaBVN6ANoFkdAmihpgb6xgXV9lChoBmgJaA9DCFWlLa7xUmJAlIaUUpRoFU3oA2gWR0CaNC7IDHOsdX2UKGgGaAloD0MIQwBw7Nk8VUCUhpRSlGgVTegDaBZHQJpAud9Ujs51fZQoaAZoCWgPQwjek4eF2gZpQJSGlFKUaBVNTQJoFkdAmkbBisny/nV9lChoBmgJaA9DCMKJ6NfWxFNAlIaUUpRoFU3oA2gWR0CaUT2+PBBSdX2UKGgGaAloD0MI1h9hGLCWaECUhpRSlGgVTbMDaBZHQJpa22jO9nN1fZQoaAZoCWgPQwj129eBc1YUQJSGlFKUaBVNTgFoFkdAml0BJAdGRXV9lChoBmgJaA9DCNF6+DJRHCJAlIaUUpRoFU0jAWgWR0CaXuWRRuTBdX2UKGgGaAloD0MIt+wQ/7BnX0CUhpRSlGgVTegDaBZHQJpqIN3GGVR1fZQoaAZoCWgPQwjlnUMZKldjQJSGlFKUaBVN6ANoFkdAmna2T1TR6XV9lChoBmgJaA9DCPLNNjem/V1AlIaUUpRoFU3oA2gWR0CagPD3ueBhdX2UKGgGaAloD0MI7BaBsb7fWECUhpRSlGgVTegDaBZHQJqNJgE2YOV1fZQoaAZoCWgPQwj5Zpsb0yBTQJSGlFKUaBVN6ANoFkdAmpfAyM1jzHV9lChoBmgJaA9DCOMan8n+eXq/lIaUUpRoFU1cAWgWR0Cam1pEx7AtdX2UKGgGaAloD0MIwZDVrZ7wWkCUhpRSlGgVTegDaBZHQJqm5NEgGKR1fZQoaAZoCWgPQwhpkIKnkKsAwJSGlFKUaBVNNwFoFkdAmqjy57PY4HV9lChoBmgJaA9DCKPMBplkHCtAlIaUUpRoFU01AWgWR0CaqtfChvitdX2UKGgGaAloD0MI5WGh1jRMYkCUhpRSlGgVTegDaBZHQJq3OrbQC0Z1fZQoaAZoCWgPQwhbzTrje81hQJSGlFKUaBVN6ANoFkdAmsKT+FUQ1HV9lChoBmgJaA9DCKClK9hGOVlAlIaUUpRoFU3oA2gWR0CazQ44p+c6dX2UKGgGaAloD0MI6Iam7PSMWkCUhpRSlGgVTegDaBZHQJrZp51Ng0F1fZQoaAZoCWgPQwjS4/c2/StcQJSGlFKUaBVN6ANoFkdAmubB33YcvXV9lChoBmgJaA9DCIBFfv2QJ2JAlIaUUpRoFU3oA2gWR0Ca8ZmR/3FldX2UKGgGaAloD0MIIzKs4o1+WUCUhpRSlGgVTegDaBZHQJr9La0x/NJ1fZQoaAZoCWgPQwiqgHueP3ZgQJSGlFKUaBVN6ANoFkdAmweb0rbxmXV9lChoBmgJaA9DCEtzK4TVVVVAlIaUUpRoFU3oA2gWR0CbFDQgLZzxdX2UKGgGaAloD0MI5iDoaFXgXkCUhpRSlGgVTegDaBZHQJsfA93bEgp1fZQoaAZoCWgPQwh9eJYgI6BfQJSGlFKUaBVN6ANoFkdAmyrfsmfGuXV9lChoBmgJaA9DCGssYW2MSlpAlIaUUpRoFU3oA2gWR0CbNzN83MpxdX2UKGgGaAloD0MId9zwu+n9XkCUhpRSlGgVTegDaBZHQJtCrR9gF5h1fZQoaAZoCWgPQwh+/KVFfWJgQJSGlFKUaBVN6ANoFkdAm0ybbQC0W3V9lChoBmgJaA9DCOc0C7Q7+FxAlIaUUpRoFU3oA2gWR0CbWDsxfv4NdX2UKGgGaAloD0MIJF8JpMS+X0CUhpRSlGgVTegDaBZHQJtjvA31jAl1fZQoaAZoCWgPQwiVtU3xuG9fQJSGlFKUaBVN6ANoFkdAm26MkMTewnV9lChoBmgJaA9DCI51cRsNUVRAlIaUUpRoFU3oA2gWR0CbexFV1fVqdX2UKGgGaAloD0MIVwVqMXjaYECUhpRSlGgVTegDaBZHQJuFf8FY+0R1fZQoaAZoCWgPQwiJt86/3fxiQJSGlFKUaBVN6ANoFkdAm4/nwb2lEnV9lChoBmgJaA9DCCC29GgqA2NAlIaUUpRoFU3oA2gWR0Cbmg+lTFVDdX2UKGgGaAloD0MIf93pzhPKZ0CUhpRSlGgVTTwCaBZHQJugtUgjhUB1fZQoaAZoCWgPQwiIZTOHpD9cQJSGlFKUaBVN6ANoFkdAm7ExRhttRHV9lChoBmgJaA9DCNKnVfSHAE7AlIaUUpRoFU1iAWgWR0CbtSI5HVgAdX2UKGgGaAloD0MI0lYlkf07akCUhpRSlGgVTXwBaBZHQJu33v8ZUDN1fZQoaAZoCWgPQwihZ7PqczX6v5SGlFKUaBVNQQFoFkdAm7oErsjVx3V9lChoBmgJaA9DCEvqBDQRXmBAlIaUUpRoFU03AmgWR0Cbv6ESdvsJdX2UKGgGaAloD0MIhSLdzynxXUCUhpRSlGgVTegDaBZHQJvLuuKXOW11fZQoaAZoCWgPQwgCZr6Dn1NSQJSGlFKUaBVN6ANoFkdAm90BPsRg7nV9lChoBmgJaA9DCEGbHD7pKFVAlIaUUpRoFU3oA2gWR0Cb59+VTrE+dX2UKGgGaAloD0MI+5Y5XRbBQsCUhpRSlGgVTY4BaBZHQJvq61a4c3l1fZQoaAZoCWgPQwiAtWrXhHT7v5SGlFKUaBVNbAFoFkdAm+7guqWC3HV9lChoBmgJaA9DCMe6uI0Gs1RAlIaUUpRoFU3oA2gWR0Cb+7gNgBtDdX2UKGgGaAloD0MIwW9DjFcRYUCUhpRSlGgVTegDaBZHQJwIe7OE/Sp1fZQoaAZoCWgPQwjT2cngKIhVQJSGlFKUaBVN6ANoFkdAnBDLuIAOrnV9lChoBmgJaA9DCG8p54u9jWFAlIaUUpRoFU3oA2gWR0CcG5T3qRlpdX2UKGgGaAloD0MIyQBQxY1JWkCUhpRSlGgVTegDaBZHQJwn1WFN+LF1fZQoaAZoCWgPQwiYFYp0PyVgQJSGlFKUaBVN6ANoFkdAnDFvnW8RMHV9lChoBmgJaA9DCJAxdy0hSmFAlIaUUpRoFU3oA2gWR0CcPymFajesdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
initial_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35d814dafc77a10bd5eef64b70c95e63ae27ce78b0199abaf7dca1ad1f4661c7
|
3 |
+
size 153833
|
initial_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
initial_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f20da8c2820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f20da8c28b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f20da8c2940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f20da8c29d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f20da8c2a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f20da8c2af0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f20da8c2b80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f20da8c2c10>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f20da8c2ca0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f20da8c2d30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f20da8c2dc0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f20da8bf420>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAGI/6uV9PvmSo4AcF9aPSaD6Nj2i5fbD4MHEQOewGpvBWa9RouICqeTDh3wfFP5LQtLsZKLzLQN69Wu8hP8KatI/ygrmHBEvFkAyJxOcIK5X3zkijboxNBo+pSbIjCj0gfvHvD44GwylYIFaPoKhyomWl5IM13koWOe487a7kf9Be10EQWMCJHtoxkNR/Jr+0++xipJDqtZmDUX+irSgNdHlkcU5zK9Hppo1Umt2x2jg6xb8gOgsI8+AmP9Yn7s9fQ1yLtH64hD4Vh1XqVIs/NnCzKinfTZdT8bHECFDj23rJLgA8yl0rifVqq87x4aLw7yHvmmoWPLQygSzVXALxRWsP0NBbR5iVGE3czC6gzArllhmplzwTg1yehQGi7/6oPTJ9RQeeyuzX6qJCuTsxRZh4+S3lyRmSzk3iWLsGIHpsA0IJu1VpYw2U5nnMHM6jZ7nh6onVhBXmrWrixoZ0ePODEVQSqYAYXHbIyDJAv6VdfEDkIBgOGJ+aEgSYhGTwkwS0ijer4a7TGtQbUpys/qghHlcljuE+KlBoMyZUlcRNGbmNd4CgmLITYWseaD5kPqOxEtcTxpofmf21J7tPSMaUwgeq6CQwVroO4euaPs1em3+EYtW/Qholf1ksSvRZymvhdxXrbuWiU56zo/qfGpu1/MFofXgvH+oExPG4uRyScGWNjFi9zYKssUULTPNTGnXrRqSCsYI3FI3kb1lrpVtY0dK1SRZTtpqUL3Nm5022klCgMXFm/AsS5wreqdL2Msz5jk/aSXpv9idX77/qMmDuxT0BcTy/nkY7GPMc6oJ6LW2EAP182cE+9RRmEDQmrcspjkRyTnNMj4e7aqTPoC/Afhls+JRd0z0JQv1NdeJAfON3yalM5QKD2/tJNZD9/wBQT1ODe921cwfDd3eks12EJJhc+rnkQkH6ouxoE0zKdp9tsvKlzlU6Na+raO75W6YPePEitiQZAzwZ1r3Bqw3DnVoc13+ELGya5Nq/sod6Kv6epBkI1GkXLj8GaMuppMNx/L42+IFM7YYSX7yaXcsuPCiQrv9HxmXCDp0+8IOBuj4xFnCsGmi+9y0TUfCXQCLHUYxeGZXa4r/PpndzkMcmZo8Ia+bo/oewrfyiKd4VGfYjB7yRIX6ir7lCMvXFLjxuNST8OKAbxWEL2uG91hu3cm+bNQj/i0r1RQCmKDz8r9mSAIDYFdECMEE58W3QKJg8PAjMIjIlgEzJjnwJjcmemClLaIRlgNfcARqdUuZl7SUF0tfSQCTs/qHlaU8wAxz5oS67O3ZG01Slm5PrhD4hgIyHfu/OyyixruKSNjgd2Bwku+oUVMKSrM3CbwoeYJvUDBBCXivEVxxiVmkl3a4rRgmNGmp5yu6OG0OhXW3DN+ndtRFphqn/Vh1/TRtRfCcFqs9loL0hPXEVzGBdAxYFUe3xOZGARYtjLDjke1BFZSOK9Cseh83dczcRiY1KijWnWCSS3bmi77s+wCy5cq1NRdyeMyiVPFN5Sl9TEitg+0XGQR8EiSlXuSHufvOoTVom99LYgTr3Qh6WvH6tvEacKVsnNsMuAxESKWwVAoI/WViZIorhSY74wrRIXBd8Fy/joNpk7vPeJvhii0j0ryAU3Ps1bDOdA6BvjvIxsyRXDcnkSXyS94DJyoZeF/05x1DZ8b1/moGmDMkvoypoOaBZpIQsQX5OnKQ44D0x6D2cK+rhfd7NQQ+Iqfxu8O1YQkOMu9XpS6lMBo5AlNeMyqUkb9o4rF99ZSRHit1CVba94RFxbj+j6+KJEKz7Q2zTO2pgPMhPV0ODyTnyFaGyXZc63fV09wy/UAQpc0+T7H6A4d+0GZGcxB9fP8aCvwaPsOGZwEUjr5Z1DfqNXmCNEqa/yKAlFVNTp2jGxWGIS/7YUrzRGi8qodImuyEuqzLiA5y7bCf5A9vrQFBpyq8RqYSH4sKThu1zstvWYUA4E2RC1gf74tfxTN1A85ghmW8fassERhSBy3RXY9ClqMGva8ZnJAFEroUrKSJHsYFWCPRpnmldiTO8y0SEUUMG3Yk2QnbHxmAPdDWs+IcTqgO3nY+Ntam8rE/KHHKvJh+6a/sslCi9UFXLLbFPaZydf/hNGJPhSACItUXA+hhxKtMaVZDI79DqjNBdDPDCgQJxsltgCrTabptvGR7TlwEU0K0aNtIOkrST+c7/IEGHmybAQxbVxNMWgJux3WYVxc2SD0zSYAEaTFnH6lisf/mGW6RJE7+52c1xhpMskkD8XvAuPRl/kmKJ7kczro88PThnDW0dZ17BKqaiDNOYzSxFesgntMWtHANwbpDoxW6ECxuF2Jw6ITbgRBkG/JSkG6NRFWtkpzFGAADRWhxDVmvHvPTfly8AK5NzhJv67igyzDipjahTIdCPZwOR5fInPQNwl6qhzvI1BQuciocrSeK45X99am/afWCfffnXlRA8xXPovs5oH9b399FXb/BSliDMMvAFneWIezelHnp9HU/Bjqz3l6hfOymZA5qIYT50F4bpxEPkYjcxAsZ5p7w9ia+Xk33pbcTlxO1Z5BbCZafCkoQWPf/vWsBPS08c2P3GhYhGvFhtPJFOmEQe9oAjcksi1gCW7ceGcNo9Q1dnFYfo1tSKike3iwQGiBHmWJzRV04gt7STy/Arv85pZJ9xpaFrF8cu5vKsqq5ituati4QxOi5wEy16+TkTrrC5OD1bRtgW7nzYqB1PFT+ONoxwfkxHTSCExbIxiamZjLyiZAIiGVm3LmMJpL1lcn5vhP7S4CQYZySxQD7OOljOPZ4cxreaCXFodrHFFEo+ttSqDbMMNbzI2cJyYaJRkUT9JeX5jDb086A5kt+xw8rfMVeoAjdBGXuFyUogVV1X0gmZMDwPjIy/EdmdgWxrOtWAmShtmXZsuAPu76ZcNdBN1dtelUmbBxQp9ijrm1s+6mC5DTIlwKSWJAiD58WDhY5IoJCbVuI3LZk7TF/PsT9IN7Shae8KJGtUqryxOEYj+m218i74sh6zi/PnrQxpQ63B5IcIfRVSYb3X1UHWVul3ffWBrmtv1PzaYNkyPD4mtE+nlgTX8p2D5rRXhBfC/H17fyXyka/cweC8geizBAgx2PRW0rFk4NQQommsaXb4PaAt8i8Eg1ma2DEkO4+rg24OcuRt/IX6RkkjG/oaJDx5/bBA6tHn775Pykl9Iya8W67Xdi89QnGe673APTI0MZthZcRuekslNmG1p25hAZowqFaLzB+OcnfK/UUI3sSq93S7HwTJCKVUPvckWvffLSoIpqqPZB5wO8Y6l11kj7+4zxME9CdcYHsLgQwSYAavRGvRrXY01BwEpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEscdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAHJ/VMczEquwz9tjk6MgsxaTKDPCf6Aa51VAdnptfpK06folkJM3Zl1F3lQ0hvqjiaoQcttdTCyFD37MqIC9sF84hnP/hZQ2efXhGczVrsLfRZakE0F+ItrvDww9uGr8oYa6/Z1xIzh9cFsg9PXbyT/IhDLGHSPbjDWzi7tglfWcFTP0FeU4QyzD0swsV9FQiBc+v/ekvxI8F8ZhzzWv+3B+nJQRDaGZViXCdv+JpmkJmMAnz2BQ5ty0PzONCHH/+Zi5q4v2tI9mqPmVKB2mbT4w4ozvX4sd0BDkxy4F+KUU+cXmL7YWkdBEAvAsoqTLSEN7hxp/ROXY5KIHL8uAp67qJotWha3AmRLM7xmAa5O3jT3QGTBI3GXHQ91pML4TbyDkRZzTVDslTJosRKas6ED99rmel1leCuAqRPGTgqe1SzCJNmcBcGSN1Be/EGN0Sw6bIPx5dCNdIOtKjRTjyLTL0P0XmBGiPHk7urn8v+vmuaHiY/E1axRzsD16e3FO/rbTUeXd0bOPuRn4ANTY/Qso4KB2mV+tYJJ6xltCYG53cxrENf4ot1jZWVHR67/za7+a3Ir8xTynMg6wCZvbuq9fSiKOh8vh9hr4ONgBfkJuwpcK/Gc7h+l8Jj044KvR+/uPsZJfeevGZvMOAKEIS2mVMsUuQVYzqKPqeJlkCF7dlf7LS6Y5/bNQpxrmFbj1b5li7gpbvQdi4qnk1myKlVvfjEbHtHwzBc89ZfhVlBAPkP8S1O3WGuOD7alQYAEXQNlBbuQ9giRRR7l9Kv4JjcRamiiBsRHPDIQK9gqXpa3U8+4L11gpjeOUweRxogx9jBi11dbBPRIPZTUdBe6bq/NQfME3GI9nfKvhiMofotaKMb8/qpLg2BhJTyUXGCv0t1YYf4o46+mNICVnBWEMfcZ0vLHan3pjDaRXurDxqfH7/uuP2FM6iITaL+sss3ACDu/JvqD6rYtz2LRVFyIvjNxgGbBa31KzdVeE13zq9my//JbgWgvLDyt620WiBjzNovfkW5kLlgAaYP42gHFIUYgymqSYN3fKBvZC6wC0mD9M6YbxopfmYYPDYFd4J7AOXoM5N31tC1sF24HXdlateYYrVMy/KhPXGFEjedFaAByweb42vZeyx9sstOi141wnRPdK5xwJQXjbDbXFp0CP7VmF50AUureQhIh9nF4nqQqoWZ9oMCiya5fr7grU3YOoYorRtfqiRM2p1kFtmynvVx/EcCuYCfLC5pvYKkmDCgd/7Fo07KCNML2krbYjrR7N372aPkJcBBolFOeWW5QVOwvNd6QAGmXkCNE4BYOVwSYyzoLljTRfLOLxCiz4Q+Y8FhnY3ghHqd+OzxH1rleNeLvJEIHODSxLkFShYFMpOJnkWFsd//0tHS/905FSeIMjIG8nDgD1kqHrr54LBmjp16G25cZrv+xhZyVNqs3aL1Da00EO9M0AOSlT21rQ1pw7HFHyF4TAnPAv6F6gF+u67S19IRiiCZcNwGwIMp/CTL+Lr2rJCaGtaxjYRTHC3FjtTy7I24YYzDi63hxDW0p7DMQTaLi+3KZv6GzZLjzB8WO4MEnDjNEYW81FVn+rw93IWgBq8xRj7rORXC2q8DtMTV1H8oMmovktPznY0+HaqYJJhzDIGYhIhK48ryyhi/HHTE83Ecvi0QoF7IGSXJMk8x8BOUUYMA6apOhvZ7ZE+6i1ZN4escQ4lz0IDvsssIBIFYtzr/8+UQJO4kqbrqGH/GiRjZHpMIIR8WqkDTnokC0THfVr1GdeLlWViXJP+j2J1nZrwnU4BrI2K9LvEJ5j+jjsr5C4nNTQlty0+ud6CVokDC6YTLO+e31P6v1oyUNCFsP0Mhlq6VvcRXnTH3VWidfMC27S08v3OYbRBY/5Ju+rj9DG2AjZ0OcGk6Is47ArlkrJ9COMjdJXqF6KExJEQZqheofwl0K4mHhd74UzTDKgFajk+ERpGyy0T/n/eGYQkQNOFqSXQ0Aw9I3dIDFWBxQlTcuDZTdNb7pKLkxpKIRvSgI+YBlm9z9AeLAfWFvvgDod9cf/RrA9xmcPH5WzIBqM/NwmaYMMjpBPLkSJfPCgLtuiksHQz6dZvJojsS97pSBCiXDcMg+mMG55+hlXVhLsxtvrh0UfEP3oMD/ah+lquDDKN+RG7fChbcOM21WapzwEjiopl5ispexeIRf8cqW8qr1FitDVHMqX3Y//IeSk9IsMElRpAZm18nPZD3KYxCkQT0mM8CBDAuj3ES4RtDUqp0HWVJu0GZbjnRrtmebyCfBSlSGee9EDYshSDeZDVi38+zlTpDQghbgNaGoFxmhBBbnfJAXU4jezhe3AGZnelS8//v5JKD8Wyp/34sKTCkwgsjdtMZhr+z7eDhup9IAyh2gAqLnCV9GSTYkdfjnpQuUdA+DBRECne7ioxYTgL6NAtceYg0HyiI+l1vFVzcXyboEyt9G2yUwiAREnIyWwI7bV2DWhsDRuRqhUu+135id77QyoG/hI+c3O5AUOlAO7gyOb6k3axXtTwTAfBS5/SeUscOKFxd8hgdjZ2JGJKvM6W7pqo9cKcwK/DifAtnDiXKP7BTroNteYo73nF7XxsilFt1/iE5tVVTjVUcQ+5PbV6D32QzqMH8KgTJcPQAAB6hYiVxsOsrEAJ/UJAO9M+GvyE+RQX6M2iVnii3hA9GFx84LiY7TUGFSNgxB2U41AXn2xACW6dJDlfKHNCZafizS17OE5p5UDfqdy9E+y2SMpT+xD+JtUApzy0jI9J7eD1fsZN39LWYojPVBzlU/3G2IA7ar894kTqXgjvw3mqD2LaUuhF6zucQmHTrU5frmz3EOE7pd5qiO8rjmmCsyKcpD94cR9l48xyrfTcSclrtAvT3/tYy+lSelgWSAtIlhlPnvR05i9vd67rC3DMq8CSJQ+hM6LDo+c0r5cCnYtenGWt3HbGB9UjGLHtwEctXYp/D6nbdQ2AtL3j1Az9BTE9kaYN7WTfD9hCgQiYUj3ps0HHFxy28lf7eCDi8iVMRr9TAiilfN8x0gtp7KpAikTpWLY3Y0VkSDZJKWvkImIs8mILTtpeNpmF+pMNMj63rjOl4ybiNhjoYrZVthf7tOVikwZ3sZ6Iha0piOySwoyGGPARciWxAEZ+LSvAdq6ej+xg9quCcoI00KsR0UcIFwJ6BYak3W3QLXPgQFWJWuQ6x4epyanBot7S3bUaS5DvhRSxon4520CrHQIFAc0H2VndlVDBmWAE24oFMHAg/l3J0hVvC395XBbEbYujSY7ENEKhv9XKhJgWPBP4/Za4mXR9M6DYIqNBwj9fWKzG30gElGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 500736,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673056280321218913,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAHoywb4XKmU/bBkXPd2KC76S1SC+TAHEPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIy7xV16GmXECUhpRSlIwBbJRN6AOMAXSUR0CYVKbO/tY0dX2UKGgGaAloD0MI9zqpL0sqWUCUhpRSlGgVTegDaBZHQJhjij/Mnqp1fZQoaAZoCWgPQwhbfXVVoOxcQJSGlFKUaBVN6ANoFkdAmHBJ8Sf16HV9lChoBmgJaA9DCOzAOSPK6mVAlIaUUpRoFU3oA2gWR0CYe151/2CedX2UKGgGaAloD0MIU5PgDWlnYUCUhpRSlGgVTegDaBZHQJiGe5iExqR1fZQoaAZoCWgPQwg1lrA2xhFmQJSGlFKUaBVN6ANoFkdAmJFKScLBsXV9lChoBmgJaA9DCHak+s4vQiZAlIaUUpRoFU1CAWgWR0CYlOKPGQ0XdX2UKGgGaAloD0MIvkupS8YjXkCUhpRSlGgVTegDaBZHQJifN63RXwN1fZQoaAZoCWgPQwjswg/OJ3hgQJSGlFKUaBVN6ANoFkdAmKmiF49ovnV9lChoBmgJaA9DCCsYldSJM2VAlIaUUpRoFU3oA2gWR0CYtBqREF4cdX2UKGgGaAloD0MIVyb8Ur/JY0CUhpRSlGgVTegDaBZHQJi/LCZWq951fZQoaAZoCWgPQwh6jsh3KRdfQJSGlFKUaBVN6ANoFkdAmMu4pQUHp3V9lChoBmgJaA9DCPN2hNMCDmJAlIaUUpRoFU3oA2gWR0CY1xvd/J/5dX2UKGgGaAloD0MIdAmH3mIGYECUhpRSlGgVTegDaBZHQJjhARK6Fuh1fZQoaAZoCWgPQwiFtTF2wt5gQJSGlFKUaBVN6ANoFkdAmOuAB5ooNXV9lChoBmgJaA9DCIXq5uJvElxAlIaUUpRoFU3oA2gWR0CY9fn8baRIdX2UKGgGaAloD0MI8WjjiLV/Y0CUhpRSlGgVTegDaBZHQJkAHJGOMl11fZQoaAZoCWgPQwhkz57LVMpiQJSGlFKUaBVN6ANoFkdAmQpa3VkMC3V9lChoBmgJaA9DCK9DNSXZwGRAlIaUUpRoFU3oA2gWR0CZFAFI/Z/TdX2UKGgGaAloD0MIvcgE/BpZKcCUhpRSlGgVTR0BaBZHQJkXVvhqCYl1fZQoaAZoCWgPQwhHHogs0jpfQJSGlFKUaBVN6ANoFkdAmSMdlum78XV9lChoBmgJaA9DCEjeOZShjV9AlIaUUpRoFU3oA2gWR0CZLxP/aQFLdX2UKGgGaAloD0MIfa1LjdBFX0CUhpRSlGgVTegDaBZHQJk3FHEuQIV1fZQoaAZoCWgPQwjUEFX4M49WQJSGlFKUaBVN6ANoFkdAmUEWycCo0nV9lChoBmgJaA9DCAqFCDiEJF5AlIaUUpRoFU3oA2gWR0CZSs2jO9nLdX2UKGgGaAloD0MIErwhjQovW0CUhpRSlGgVTegDaBZHQJlWkudwvQF1fZQoaAZoCWgPQwj1KjI6ILJfQJSGlFKUaBVN6ANoFkdAmWHT7MxGlXV9lChoBmgJaA9DCEEQIEPHv2NAlIaUUpRoFU3oA2gWR0CZb5YnfEXMdX2UKGgGaAloD0MIoDL+fUY+YUCUhpRSlGgVTegDaBZHQJl4qC8OCoV1fZQoaAZoCWgPQwjgoL36+BBpQJSGlFKUaBVNqQFoFkdAmX0/ikwevXV9lChoBmgJaA9DCHXN5Jtt01tAlIaUUpRoFU3oA2gWR0CZhuJNTLntdX2UKGgGaAloD0MIn47HDFQaWkCUhpRSlGgVTegDaBZHQJmQlO32EkB1fZQoaAZoCWgPQwjSUQ5mE/9fQJSGlFKUaBVN6ANoFkdAmZp9+1Bt13V9lChoBmgJaA9DCI3sSstIZGRAlIaUUpRoFU3oA2gWR0CZpb5CF9KFdX2UKGgGaAloD0MI8nfvqLHjYUCUhpRSlGgVTegDaBZHQJmv4XqJMxp1fZQoaAZoCWgPQwjBq+XOTN5dQJSGlFKUaBVN6ANoFkdAmbquVkc0cnV9lChoBmgJaA9DCNf34SAhPFVAlIaUUpRoFU3oA2gWR0CZxiAlOXVtdX2UKGgGaAloD0MIzPEKRE+rXECUhpRSlGgVTegDaBZHQJnTTzxwyZd1fZQoaAZoCWgPQwixMa8jDkViQJSGlFKUaBVN6ANoFkdAmeE91loUSXV9lChoBmgJaA9DCOpBQSla5VZAlIaUUpRoFU3oA2gWR0CZ8M0nPVurdX2UKGgGaAloD0MIz72HS46TVUCUhpRSlGgVTegDaBZHQJn5mPEKmbd1fZQoaAZoCWgPQwiL4eoAiEdfQJSGlFKUaBVN6ANoFkdAmgNkYbbUPXV9lChoBmgJaA9DCLbZWIl5FFtAlIaUUpRoFU3oA2gWR0CaEtFa0QbudX2UKGgGaAloD0MIWvROBdzQXUCUhpRSlGgVTegDaBZHQJofES7GvOh1fZQoaAZoCWgPQwiespquJzZfQJSGlFKUaBVN6ANoFkdAmihpgb6xgXV9lChoBmgJaA9DCFWlLa7xUmJAlIaUUpRoFU3oA2gWR0CaNC7IDHOsdX2UKGgGaAloD0MIQwBw7Nk8VUCUhpRSlGgVTegDaBZHQJpAud9Ujs51fZQoaAZoCWgPQwjek4eF2gZpQJSGlFKUaBVNTQJoFkdAmkbBisny/nV9lChoBmgJaA9DCMKJ6NfWxFNAlIaUUpRoFU3oA2gWR0CaUT2+PBBSdX2UKGgGaAloD0MI1h9hGLCWaECUhpRSlGgVTbMDaBZHQJpa22jO9nN1fZQoaAZoCWgPQwj129eBc1YUQJSGlFKUaBVNTgFoFkdAml0BJAdGRXV9lChoBmgJaA9DCNF6+DJRHCJAlIaUUpRoFU0jAWgWR0CaXuWRRuTBdX2UKGgGaAloD0MIt+wQ/7BnX0CUhpRSlGgVTegDaBZHQJpqIN3GGVR1fZQoaAZoCWgPQwjlnUMZKldjQJSGlFKUaBVN6ANoFkdAmna2T1TR6XV9lChoBmgJaA9DCPLNNjem/V1AlIaUUpRoFU3oA2gWR0CagPD3ueBhdX2UKGgGaAloD0MI7BaBsb7fWECUhpRSlGgVTegDaBZHQJqNJgE2YOV1fZQoaAZoCWgPQwj5Zpsb0yBTQJSGlFKUaBVN6ANoFkdAmpfAyM1jzHV9lChoBmgJaA9DCOMan8n+eXq/lIaUUpRoFU1cAWgWR0Cam1pEx7AtdX2UKGgGaAloD0MIwZDVrZ7wWkCUhpRSlGgVTegDaBZHQJqm5NEgGKR1fZQoaAZoCWgPQwhpkIKnkKsAwJSGlFKUaBVNNwFoFkdAmqjy57PY4HV9lChoBmgJaA9DCKPMBplkHCtAlIaUUpRoFU01AWgWR0CaqtfChvitdX2UKGgGaAloD0MI5WGh1jRMYkCUhpRSlGgVTegDaBZHQJq3OrbQC0Z1fZQoaAZoCWgPQwhbzTrje81hQJSGlFKUaBVN6ANoFkdAmsKT+FUQ1HV9lChoBmgJaA9DCKClK9hGOVlAlIaUUpRoFU3oA2gWR0CazQ44p+c6dX2UKGgGaAloD0MI6Iam7PSMWkCUhpRSlGgVTegDaBZHQJrZp51Ng0F1fZQoaAZoCWgPQwjS4/c2/StcQJSGlFKUaBVN6ANoFkdAmubB33YcvXV9lChoBmgJaA9DCIBFfv2QJ2JAlIaUUpRoFU3oA2gWR0Ca8ZmR/3FldX2UKGgGaAloD0MIIzKs4o1+WUCUhpRSlGgVTegDaBZHQJr9La0x/NJ1fZQoaAZoCWgPQwiqgHueP3ZgQJSGlFKUaBVN6ANoFkdAmweb0rbxmXV9lChoBmgJaA9DCEtzK4TVVVVAlIaUUpRoFU3oA2gWR0CbFDQgLZzxdX2UKGgGaAloD0MI5iDoaFXgXkCUhpRSlGgVTegDaBZHQJsfA93bEgp1fZQoaAZoCWgPQwh9eJYgI6BfQJSGlFKUaBVN6ANoFkdAmyrfsmfGuXV9lChoBmgJaA9DCGssYW2MSlpAlIaUUpRoFU3oA2gWR0CbNzN83MpxdX2UKGgGaAloD0MId9zwu+n9XkCUhpRSlGgVTegDaBZHQJtCrR9gF5h1fZQoaAZoCWgPQwh+/KVFfWJgQJSGlFKUaBVN6ANoFkdAm0ybbQC0W3V9lChoBmgJaA9DCOc0C7Q7+FxAlIaUUpRoFU3oA2gWR0CbWDsxfv4NdX2UKGgGaAloD0MIJF8JpMS+X0CUhpRSlGgVTegDaBZHQJtjvA31jAl1fZQoaAZoCWgPQwiVtU3xuG9fQJSGlFKUaBVN6ANoFkdAm26MkMTewnV9lChoBmgJaA9DCI51cRsNUVRAlIaUUpRoFU3oA2gWR0CbexFV1fVqdX2UKGgGaAloD0MIVwVqMXjaYECUhpRSlGgVTegDaBZHQJuFf8FY+0R1fZQoaAZoCWgPQwiJt86/3fxiQJSGlFKUaBVN6ANoFkdAm4/nwb2lEnV9lChoBmgJaA9DCCC29GgqA2NAlIaUUpRoFU3oA2gWR0Cbmg+lTFVDdX2UKGgGaAloD0MIf93pzhPKZ0CUhpRSlGgVTTwCaBZHQJugtUgjhUB1fZQoaAZoCWgPQwiIZTOHpD9cQJSGlFKUaBVN6ANoFkdAm7ExRhttRHV9lChoBmgJaA9DCNKnVfSHAE7AlIaUUpRoFU1iAWgWR0CbtSI5HVgAdX2UKGgGaAloD0MI0lYlkf07akCUhpRSlGgVTXwBaBZHQJu33v8ZUDN1fZQoaAZoCWgPQwihZ7PqczX6v5SGlFKUaBVNQQFoFkdAm7oErsjVx3V9lChoBmgJaA9DCEvqBDQRXmBAlIaUUpRoFU03AmgWR0Cbv6ESdvsJdX2UKGgGaAloD0MIhSLdzynxXUCUhpRSlGgVTegDaBZHQJvLuuKXOW11fZQoaAZoCWgPQwgCZr6Dn1NSQJSGlFKUaBVN6ANoFkdAm90BPsRg7nV9lChoBmgJaA9DCEGbHD7pKFVAlIaUUpRoFU3oA2gWR0Cb59+VTrE+dX2UKGgGaAloD0MI+5Y5XRbBQsCUhpRSlGgVTY4BaBZHQJvq61a4c3l1fZQoaAZoCWgPQwiAtWrXhHT7v5SGlFKUaBVNbAFoFkdAm+7guqWC3HV9lChoBmgJaA9DCMe6uI0Gs1RAlIaUUpRoFU3oA2gWR0Cb+7gNgBtDdX2UKGgGaAloD0MIwW9DjFcRYUCUhpRSlGgVTegDaBZHQJwIe7OE/Sp1fZQoaAZoCWgPQwjT2cngKIhVQJSGlFKUaBVN6ANoFkdAnBDLuIAOrnV9lChoBmgJaA9DCG8p54u9jWFAlIaUUpRoFU3oA2gWR0CcG5T3qRlpdX2UKGgGaAloD0MIyQBQxY1JWkCUhpRSlGgVTegDaBZHQJwn1WFN+LF1fZQoaAZoCWgPQwiYFYp0PyVgQJSGlFKUaBVN6ANoFkdAnDFvnW8RMHV9lChoBmgJaA9DCJAxdy0hSmFAlIaUUpRoFU3oA2gWR0CcPymFajesdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1956,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
initial_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eaf747f4d23dcb51eb38522dd1caec5c2154d6bc1ec99a7b4ea446c92d53e2a
|
3 |
+
size 87929
|
initial_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdb644c89b2a14bf2f92029110ad658c6b75eccbdeeeefc66b4a07c208d6d695
|
3 |
+
size 43201
|
initial_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
initial_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (225 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 170.22612896487436, "std_reward": 14.343803712352718, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T02:14:47.205509"}
|