File size: 11,266 Bytes
3a66246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa02e91aef0>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa02e91af80>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa02e91b010>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa02e91b0a0>",
        "_build": "<function ActorCriticPolicy._build at 0x7fa02e91b130>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fa02e91b1c0>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa02e91b250>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa02e91b2e0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fa02e91b370>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa02e91b400>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa02e91b490>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa02e91b520>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fa02e90f300>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "num_timesteps": 11696,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1687819173434110013,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqdCb5UE3o+cj98PZCpe75F9mu9CjhqvAAAAAAAAAAAAGgnO5Q/rD4wwAk+lWJdvuFqIT7RHZW9AAAAAAAAAACGSDm+LtY/Pxr1jz07WsG+LQQCvmj4oj0AAAAAAAAAABqlUT2PyTY79MaoveBlPL5C0Qw8BiV9OwAAAAAAAAAA87AUPl9dpj7rj5i+nal+vkRpWb35YBQ9AAAAAAAAAAAAgbk8y62zPkE7lr2UOl6+/Z0yOw13lr0AAAAAAAAAACY/qj18lo4+wr5OvusHbb4vaxq9ExOJPAAAAAAAAAAADcSNPRfnnT4qwiy+Uz5mvh79n73hGCU6AAAAAAAAAACauhs+cCzLPqFxHb6jF5m+srNoPaWpTbwAAAAAAAAAAGbInjy28yo9MH6EPLNcHL6lqT88yOqGPQAAAAAAAAAA5iY3vddgkT6lPcQ9UVJKvjlhCT0wH+K9AAAAAAAAAABAHc29P0xFPr76Mj7mXyC+uPzMPLiP5DwAAAAAAAAAAE0ojz3Pw64+ci1qvRUXgL67HsQ7VaPwvAAAAAAAAAAAzVQNvDsRwj7EnR4+q4aCvjGhvz270ts8AAAAAAAAAAAAZE68TKTOPvtqID0lGIO+Wwh0PWWx0j0AAAAAAAAAAMC72r0IkKM+q7rpPbSESb5qnXE6VLfFvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVBQQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQGAI6bONaMAWyUS+KMAXSUR0C0LvK0dBBzdX2UKGgGR0BzF667NB4VaAdL+mgIR0C0LzSdvsJIdX2UKGgGR0BuMzhNucc3aAdNCAFoCEdAtC9aEytV73V9lChoBkdAbmXO6/ZdwGgHTRcBaAhHQLQvgqWTouB1fZQoaAZHQHBFFUEPlMhoB00bAWgIR0C0L477CSA6dX2UKGgGR0BylWWPcSGraAdNHAFoCEdAtC+Qqe9SM3V9lChoBkdAbXxFx4ptrWgHTR0BaAhHQLQvk6JqIrR1fZQoaAZHQHG0SzsyBTZoB00iAWgIR0C0L6B/RVp9dX2UKGgGR0Bxnz1f3N9qaAdNKwFoCEdAtC+1+AmReXV9lChoBkdAbYu3jMmnfmgHTSwBaAhHQLQvtt6ol2N1fZQoaAZHQHHPr7Kq4pdoB00uAWgIR0C0L7s8HObBdX2UKGgGR0By551nuiN9aAdNMgFoCEdAtC/CoqCpWHV9lChoBkdAcgmWJrLyMGgHTToBaAhHQLQv0Ae7tiR1fZQoaAZHQHF2GcSXdCVoB01JAWgIR0C0L/PfsNUgdX2UKGgGR0Bwel72L5ymaAdNSgFoCEdAtC/2za9K3HV9lChoBkdAcC1+YtxuK2gHTXcBaAhHQLQwV7l7tzF1fZQoaAZHQHF4pZjhDPZoB00qAWgIR0C0MfRVdX1bdX2UKGgGR0BwNg3Kji4saAdNHwFoCEdAtDInFWGRFXV9lChoBkdAclNJ7b+LnGgHS/ZoCEdAtDKEQd0aInV9lChoBkdAcDnPC2tuDWgHTRcBaAhHQLQykMlC1JF1fZQoaAZHQHBKQwCbMHNoB00sAWgIR0C0MpTsQd0adX2UKGgGR0BvatgjQiRoaAdNDgFoCEdAtDK/80k4WHV9lChoBkdAbshKkl/pdWgHTSoBaAhHQLQy04FRpDh1fZQoaAZHQHL7XEIgNgBoB00bAWgIR0C0MtexKQJYdX2UKGgGR0Buf75IpYs/aAdNMQFoCEdAtDLdtO2y9nV9lChoBkdAcI1yOJcgQ2gHTSsBaAhHQLQy7fMfRu11fZQoaAZHQHFEXZPEbYNoB00GAWgIR0C0MvV85S3tdX2UKGgGR0BtipVAAyVOaAdNKAFoCEdAtDMAYCQtBnV9lChoBkdAbnGWVu76HmgHTToBaAhHQLQzCHXVbzN1fZQoaAZHQHDHEKE384xoB00OAWgIR0C0MwiowVTKdX2UKGgGR0ByqW6K+BYnaAdNLgFoCEdAtDMTmr8zh3V9lChoBkdAcbO+pOvdM2gHTQ0BaAhHQLQzZSy+pOx1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 248,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True  True  True  True  True]",
        "bounded_above": "[ True  True  True  True  True  True  True  True]",
        "_shape": [
            8
        ],
        "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]",
        "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]",
        "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]",
        "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
        ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
        "n": "4",
        "start": "0",
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}