File size: 8,275 Bytes
a2fedce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import gradio as gr
import copy
import re
from threading import Thread
from transformers import TextIteratorStreamer
from qwen_vl_utils import process_vision_info
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def _remove_image_special(text):
text = text.replace("<ref>", "").replace("</ref>", "")
return re.sub(r"<box>.*?(</box>|$)", "", text)
def is_video_file(filename):
video_extensions = [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg"]
return any(filename.lower().endswith(ext) for ext in video_extensions)
def transform_messages(original_messages):
transformed_messages = []
for message in original_messages:
new_content = []
for item in message["content"]:
if "image" in item:
new_item = {"type": "image", "image": item["image"]}
elif "text" in item:
new_item = {"type": "text", "text": item["text"]}
elif "video" in item:
new_item = {"type": "video", "video": item["video"]}
else:
continue
new_content.append(new_item)
new_message = {"role": message["role"], "content": new_content}
transformed_messages.append(new_message)
return transformed_messages
def make_demo(model, processor):
def call_local_model(model, processor, messages):
messages = transform_messages(messages)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(model.device)
tokenizer = processor.tokenizer
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {"max_new_tokens": 512, "streamer": streamer, **inputs}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text
def create_predict_fn():
def predict(_chatbot, task_history):
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot
print("User: " + _parse_text(query))
history_cp = copy.deepcopy(task_history)
full_response = ""
messages = []
content = []
for q, a in history_cp:
if isinstance(q, (tuple, list)):
if is_video_file(q[0]):
content.append({"video": f"file://{q[0]}"})
else:
content.append({"image": f"file://{q[0]}"})
else:
content.append({"text": q})
messages.append({"role": "user", "content": content})
messages.append({"role": "assistant", "content": [{"text": a}]})
content = []
messages.pop()
for response in call_local_model(model, processor, messages):
_chatbot[-1] = (_parse_text(chat_query), _remove_image_special(_parse_text(response)))
yield _chatbot
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
print("Qwen-VL-Chat: " + _parse_text(full_response))
yield _chatbot
return predict
def create_regenerate_fn():
def regenerate(_chatbot, task_history):
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
return regenerate
predict = create_predict_fn()
regenerate = create_regenerate_fn()
def add_text(history, task_history, text):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
with gr.Blocks() as demo:
gr.Markdown("""<center><font size=8>Qwen2-VL OpenVINO demo</center>""")
chatbot = gr.Chatbot(label="Qwen2-VL", elem_classes="control-height", height=500)
query = gr.Textbox(lines=2, label="Input")
task_history = gr.State([])
with gr.Row():
addfile_btn = gr.UploadButton("📁 Upload (上传文件)", file_types=["image", "video"])
submit_btn = gr.Button("🚀 Submit (发送)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
empty_bin = gr.Button("🧹 Clear History (清除历史)")
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
gr.Markdown(
"""\
<font size=2>Note: This demo is governed by the original license of Qwen2-VL. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen2-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)"""
)
return demo |